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RESUMO 

 

O objetivo deste estudo é analisar a tendência das vazões modeladas via aprendizado 

de máquina e sob influência das mudanças climáticas de uma bacia hidrográfica 

localizada na Amazônia, visando identificar possíveis modificações no regime 

hidrológico em resposta aos cenários climáticos projetados do CMIP6. A vazão foi 

simulada utilizando uma Rede Neural Recorrente Não-Linear Autorregressiva com 

Entradas Exógenas (RNN-NARX). A análise de tendências foi realizada utilizando o 

teste Mann-Kendall (MK), o estimador Sen’s Slope e o coeficiente de variância 

aplicado às vazões médias anuais de longo prazo. A precipitação observada foi obtida 

do banco de dados da ANA (Agência Nacional de Águas e Saneamento Básico). A 

precipitação projetada futura foi obtida do modelo GCM-GFDL-ESM4, sob os cenários 

climáticos: SSP2-4.5 (médias emissões) e SSP5-8.5 (altas emissões). As vazões 

máximas simuladas pela RNN-NARX no período de referência foram subestimadas. 

Essa subestimação ocorreu devido ao viés inerente ao GCM utilizado. Assim, o 

método EQM (Empirical Quantile Mapping) foi aplicado para corrigir o viés entre as 

vazões simuladas e observadas no período de referência. Após a correção, o 

desempenho geral das simulações foi classificado como confiável, bom e excelente, 

com FIT (~0,9) e KGE (0,74-0,75) em ambos os cenários, refletindo uma boa 

aderência às vazões observadas. A correção de viés também foi aplicada à simulação 

das vazões de longo prazo (2022 a 2100), considerando os dois cenários 

supramencionados, permitindo a análise de tendências das vazões resultantes. Os 

resultados do teste MK (Z = -0,57; 𝑝-valor=0.569), com um estimador de Sen’s Slope 

(β = -0,07704), não indicaram uma tendência significativa nas vazões, para o cenário 

SSP2-4.5. Em contraste, no cenário SSP5-8.5, foi detectada uma tendência 

decrescente significativa, com os resultados do teste MK (Z=-2,59; p-valor=0,00968) 

e com um estimador de Sen’s Slope (β = -0,27110). O que aponta para uma redução 

nas vazões médias anuais. Em ambos os cenários, o coeficiente de variância 

demonstrou uma variabilidade moderada de (CV = 22,11% no SSP2-4.5; e CV 

=21,76% no SSP5-8.5). Porém, no cenário de altas emissões, essa variabilidade está 

inserida em um contexto de declínio na disponibilidade hídrica da sub-bacia 

hidrográfica do Rio Guamá. 

Palavras-chave: GCM GFDL-ESM4, Rede Neural Recorrente, NARX, NEX-GDDP-

CMIP6. 



 
 

 

ABSTRACT 

 

The objective of this study is to analyze the trend of modeled streamflow via machine 

learning and under the influence of climate change in a river basin located in the 

Amazon, aiming to identify possible changes in the hydrological regime in response to 

the projected climate scenarios of CMIP6. The streamflow rate was simulated using a 

Nonlinear Autoregressive Recurrent Neural Network with Exogenous Inputs (RNN-

NARX). Trend analysis was performed using the Mann-Kendall (MK) test, the Sen’s 

Slope estimator and the coefficient of variance applied to the long-term mean annual 

flows. The observed precipitation was obtained from the ANA (National Water and 

Sanitation Agency) database. The projected future precipitation was obtained from the 

GCM-GFDL-ESM4 model, under the climate scenarios: SSP2-4.5 (medium emissions) 

and SSP5-8.5 (high emissions). The maximum streamflow simulated by RNN-NARX 

in the reference period were underestimated. This underestimation occurred due to the 

inherent bias of the GCM used. Thus, the EQM (Empirical Quantile Mapping) method 

was applied to correct the bias between the simulated and observed streamflow in the 

reference period. After corrections, the overall performance of the simulations was 

classified as reliable, good and excellent, with FIT (~0.9) and KGE (0.74-0.75) in both 

scenarios, reflecting a good adherence to the observed streamflow. Bias correction 

was also applied to the long-term streamflow simulation (2022 to 2100), considering 

the two scenarios, allowing the analysis of trends in the resulting flows. The results of 

the MK test (Z = -0.57; 𝑝-value = 0.569), with Sen’s Slope estimator (β = -0.07704), did 

not indicate a significant trend, for the SSP2-4.5 scenario. In contrast, in the SSP5-8.5 

scenario, a significant decreasing trend was detected, with the results of the MK test 

(Z=-2.59; p-value=0.00968) and with Sen’s Slope estimator (β = -0.27110), 

demonstrating a reduction in the mean annual streamflow. In both scenarios, the 

coefficient of variance demonstrated moderate variability (CV = 22.11% in SSP2-4.5; 

and CV = 21.76% in SSP5-8.5). However, in the high emissions scenario, this 

variability is inserted in a context of declining water availability in the Guamá River sub-

basin. 

Keywords: GCM GFDL-ESM4, Neural Recurrent Network, NARX, NEX-GDDP-

CMIP6. 
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1 INTRODUÇÃO 

As mudanças climáticas têm se manifestado de forma intensa e frequente, com 

impactos severos sobre os sistemas naturais e humanos em escala global. Estudos 

baseados em simulações climáticas indicam que a Terra está em um processo 

contínuo de aquecimento, resultando em uma série de eventos extremos, como secas, 

enchentes, tempestades e aumento do nível do mar (Abhijeet et al., 2023; Masson-

Delmotte et al., 2021). A complexidade dessas mudanças exige compreensão dos 

impactos em diferentes setores, incluindo dos recursos hídricos, que são 

fundamentais para o abastecimento humano, produção de energia e agricultura 

(Vaidyanathan, 2024). Um dos grandes desafios para a ciência climática atual é a 

previsão de como os recursos hídricos, em particular a vazão dos rios, responderão 

às mudanças do clima (Tayal et al., 2024). Essas projeções tornam-se cada vez mais 

relevantes, visto que dados do Copernicus Data Space Ecosytem, da Agência 

Espacial Europeia (ESA), mostram que 2024 foi o primeiro ano a exceder 1,5°C acima 

dos níveis pré-industriais (Copernicus, 2024). Nesse contexto, a simulação da vazão 

dos rios permite analisar o risco de inundações e outras condições que afetam 

diretamente a segurança hídrica e o planejamento de políticas de mitigação e 

adaptação (Gharsallaoui et al., 2024). 

Os Modelos de Circulação Geral (GCM’s) são amplamente utilizados para 

projeções de variáveis climáticas, entre elas, a precipitação, que é a principal variável 

forçante para a simulação de variáveis hidrológicas, tal qual vazões. Assim, os GCM’s 

podem ser utilizados para obter respostas dos sistemas hidrológicos às variações 

climáticas. Como por exemplo, a seca extrema que ocorreu na região amazônica, que 

iniciou no verão austral de 2022-23 e se estendeu até 2024. Essa seca começou mais 

cedo do que as anteriores (Marengo et al., 2024), tornando 2023 o ano mais quente 

desde 1980 em grande parte da região, devido às anomalias de temperatura de até 

+2,7°C. O desmatamento, somado às mudanças climáticas, ameaça empurrar a 

floresta amazônica para um "ponto de inflexão" irreversível, especialmente nas áreas 

afetadas por fragmentação florestal e degradação (Espinoza et al., 2024). Sendo 

assim, há a necessidade de monitorar os eventos extremos, embora haja dificuldades 

em manter as estações de monitoramento em pleno funcionamento. 

Para solucionar esses desafios em bacias hidrográficas, especialmente em 

regiões tropicais, técnicas de aprendizado de máquina, como Redes Neurais Artificiais 

(RNAs), têm se mostrado particularmente eficazes. Visto que as RNAs são capazes 
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de reconhecer padrões em séries temporais, ajustando seus pesos sinápticos e bias 

por meio de algoritmos de treinamento, o que as torna ideais para a simulação de 

fenômenos naturais. Esses modelos têm a vantagem de generalizar os padrões 

aprendidos durante o treinamento, permitindo a projeção de eventos futuros. As 

Redes Neurais Recorrentes (RNNs), uma subclasse avançada das RNAs, destacam-

se por sua capacidade de utilizar memórias internas (feedback), permitindo capturar 

e representar dinâmicas temporais complexas (Pirhooshyaran e Snyder, 2020). 

Dentro dessa classe, a abordagem Autorregressiva Não-linear com Entradas 

Exógenas (RNN-NARX) tem se consolidado como uma ferramenta eficaz para 

modelar sistemas de entrada e saída com não linearidades acentuadas. Essa 

abordagem tem sido amplamente aplicada na simulação de variáveis hidrológicas 

(Wang e Chen, 2022). Duas configurações de RNN-NARX são essenciais na 

modelagem, com dois modos de operação: Open Loop e Closed Loop. No modo open-

loop (série-paralelo), os valores observados (alvo) são manualmente inseridos na 

entrada, utilizando uma arquitetura feedforward, onde as informações fluem em uma 

única direção (Menezes e Barreto, 2008). Já no modo Closed Loop (paralelo), a saída 

estimada do modelo é realimentada diretamente na entrada. Para simulações de 

longo prazo, a estrutura open-loop deve ser convertida em Closed Loop (Chang et al., 

2016). Nesse formato, os valores observados na entrada são gradualmente 

substituídos por estimativas do próprio modelo, tornando-o autônomo, uma aplicação 

relevante para RNN-NARX (Mendonça et al., 2023). 

Assim, objetivo é simular vazões para uma sub-bacia hidrográfica da Amazônia, 

considerando dois cenários climáticos do CMIP6 e analisar os impactos na 

disponibilidade hídrica da sub-bacia até o ano de 2100, por meio da análise de 

tendência. As vazões diárias foram simuladas usando RNN-NARX, tendo como 

entrada precipitação projetada do GCM GFDL-ESM4. A análise de tendência foi 

elaborada via teste Mann Kendall, estimador Sen’s Slope e coeficiente de variância. 

A metodologia adotada contribui para a compreensão dos impactos das mudanças 

climáticas nos recursos hídricos, relacionando-se diretamente com os objetivos de 

desenvolvimento sustentável da ONU: ODS 2 (Fome Zero) e ODS 13 (Ação Climática) 

(ONU, 2024). A redução da disponibilidade hídrica pode afetar a segurança alimentar 

e a agricultura sustentável, enquanto a análise de cenários climáticos apoia ações 

para mitigar os efeitos das mudanças climáticas, alinhando-se às metas globais de 

sustentabilidade. 
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1.1 OBJETIVOS 

1.1.1 Geral 

Analisar a influência das mudanças climáticas nas vazões de uma bacia 

hidrográfica localizada na Amazônia brasileira, utilizando duas projeções climáticas 

futuras do CMIP6 até o ano de 2100. Para isso, foram realizadas análises de tendência 

nas vazões, visando identificar possíveis modificações no regime hidrológico da região 

em resposta aos cenários climáticos projetados. 

 

1.1.2 Específicos 

- Desenvolver um modelo de rede neural recorrente para simular vazões 

diárias, utilizando dados históricos; 

- Avaliar o desempenho do modelo no período de referência (2009-2021), 

comparando vazões simuladas às observadas; 

- Aplicar o modelo parametrizado para simular vazões diárias no período - 

futuro (2022-2100), utilizando dados projetados por um modelo de 

circulação geral (GCM); 

- Avaliar a tendência nas vazões simuladas, conforme o teste Mann-Kendall, 

estimador Sen’s Slope e coeficiente de variância. 
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2 FUNDAMENTAÇÃO TEÓRICA 

2.1 CICLO HIDROLÓGICO 

O ciclo hidrológico pode ser considerado um fenômeno global de circulação 

fechada da água entre a superfície terrestre e a atmosfera, impulsionado pela energia 

solar associada à gravidade e à rotação terrestre (Figura 1). Esse intercâmbio entre 

as circulações ocorre em dois sentidos: i) no sentido superfície-atmosfera, onde o fluxo 

de água ocorre fundamentalmente na forma de vapor, como decorrência dos 

fenômenos de evaporação e de transpiração; ii) no sentido atmosfera-superfície, onde 

a transferência de água ocorre em qualquer estado físico, sendo mais significativas 

(em termos globais), as precipitações de chuva e neve (Tucci, 2009). O ciclo 

hidrológico contribui para muitos processos dinâmicos ambientais, como movimento 

de nutrientes, contaminação, equilíbrio de solutos e transporte de sedimentos, porém, 

a compreensão de todos esses processos, no tempo e espaço, é complexa (Chow et 

al., 1994). 

 

Figura 1: Principais fluxos e armazenamentos 
Fonte: Markstrom et al. (2015) 
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O ciclo hidrológico também pode ser representado de forma simplificada 

mediante o conceito de ‘sistema’ (Shiklomanov, 1998). Na escala global, o ciclo 

hidrológico é considerado um ‘sistema fechado’, cujo resultado indica a quantidade de 

água disponível no solo, rios, lagos, vegetação úmida e oceanos. Na escala local, os 

sistemas de água podem ser divididos em subsistemas hidrológicos. O estudo desses 

subsistemas, aparentemente independentes, é importante para entender as 

demandas existentes, na quais o elemento de análise é a bacia hidrográfica (Tucci, 

2009). A Figura 2 apresenta as contribuições das principais bacias hidrográficas do 

mundo, em descarga diária (m³/s). 

 

Figura 2: Vazão diária média de longo prazo na saída das principais bacias 
hidrográficas do mundo 

Fonte: Shiklomanov (1998) 
 

2.2 DISPONIBILIDADE HÍDRICA 

A quantidade de água no planeta não diminuirá em escalas de tempo inferiores 

às geológicas devido aos ciclos hidrológicos fechados (Oki et al., 2006). Todavia, a 

escassez de água pode se tornar uma realidade generalizada dentro de algumas 

décadas (Rosegrant; Cai; Cline, 2003). A explicação mais utilizada para a pequena 

quantidade de água facilmente acessível, é que embora haja muita água na Terra, 

apenas cerca de 2,5% é água doce, porém, a maior parte dessa água é armazenada 

como geleiras ou águas subterrâneas profundas. No entanto, essa explicação está 

parcialmente correta, pois as avaliações devem se concentrar principalmente nos 

fluxos dos recursos hídricos, ao invés de focar no seu armazenamento. Com base 

nessa afirmação, expõe-se que a quantidade de água armazenada em todos os rios 

do mundo é cerca de 2.000 km³, muito inferior a 3.800 km³/ano que é retirado 

anualmente de água (Oki e Kanae, 2006; Shiklomanov, 1998). 
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Assim, apesar da abundância de água em toda a extensão do globo terrestre, 

a porção disponível para consumo humano representa uma parcela pequena e 

passível de escassez (Tucci, 2009). Portanto, os estudos voltados à análise da 

disponibilidade hídrica são importantes para adquirir conhecimentos necessários às 

soluções e/ou adequação dos recursos hídricos diante da crise climática. 

A partir da nota técnica N° 16/2016/SPR, a Agência Nacional de Águas e 

Saneamento Básico (ANA) estabeleceu o conceito geral para disponibilidade hídrica, 

que deve ser entendida como a quantidade de água que serve de referência para 

contabilização do balanço entre oferta e demanda. O documento destaca que esta 

disponibilidade representa uma condição de oferta bruta de água sobre a qual define-

se o quanto desse recurso ainda poderia ser alocado para diversos fins ou para 

mensurar possíveis estresses hídricos. 

 

2.2.1 Disponibilidade Hídrica nas Regiões Hidrográficas Brasileiras 

O Brasil é rico no que se refere à disponibilidade de recursos hídricos, mas 

apresenta uma grande variação espacial e temporal na quantidade de água disponível 

para consumo. Essas variações de regimes fluviométricos, tanto espaciais como 

temporais, devem-se à combinação das variadas condições climáticas com as 

características morfológicas das bacias hidrográficas brasileiras. Com base nisso, 

para a gestão das águas no Brasil, têm-se as bacias hidrográficas, no âmbito do 

planejamento territorial, como a unidade básica de análise para o desenvolvimento de 

medidas com o objetivo de promover a integração entre a gestão dos recursos hídricos 

e a gestão ambiental (ANA, 2024). 

Este recorte territorial elaborado a partir de divisores de águas foi instituído 

através da Política Nacional de Recursos Hídrico (Lei nº 9.433, de 8 de janeiro de 

1997), que dividiu o país em 12 Regiões Hidrográficas (RH), são elas: Amazônica, 

Tocantins-Araguaia, Atlântico Nordeste Ocidental, Parnaíba, Atlântico Nordeste 

Oriental, São Francisco, Atlântico Leste, Paraguai, Paraná, Atlântico Sudeste, Uruguai 

e Atlântico Sul (Figura 3) (BRASIL, 1997). 
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Figura 3: Regiões hidrográficas brasileiras 
Fonte: ANA (2024) 

Apesar da elevada disponibilidade hídrica média por habitante no Brasil, que é 

de aproximadamente 13.000 m³/habitante/ano, as disparidades regionais são 

significativas quando analisadas por região hidrográfica. Na região amazônica, por 

exemplo, a disponibilidade hídrica per capita supera 213.445 m³/hab/ano, refletindo a 

abundância de recursos hídricos na área (ANA, 2015). No entanto, na maioria das 

regiões hidrográficas (RHs), a disponibilidade é drasticamente inferior à média 

nacional, como é o caso das regiões do Parnaíba, Atlântico Nordeste Ocidental e 

Atlântico Nordeste Ocidental Oriental, como pode ser observado na Tabela 1. Essa 

desigualdade evidencia os desafios relacionados à distribuição desigual dos recursos 



21 
 

 

hídricos no país, com algumas regiões enfrentando escassez relativa em comparação 

com outras. 

 

Tabela 1: População, densidade demográfica, disponibilidade hídrica e 
disponibilidade hídrica per capita das regiões hidrográficas brasileiras 

Região 
Hidrográfica 

Área de 
drenagem 

(km²) 

População 
(ano-base 

2010) 

Densidade 
populacional 
(habitante/k

m²) 

Disponibilida
de hídrica 

(m³/s) 

Disponibilida
de hídrica 
per capita 

(m³/habitant
e/ano) 

Amazônica 3.879.207 9.694.728 2,5 65.617 213.445,7 

Tocantins-Araguaia 920.087 8.572.716 9,3 3.098 11.396,4 

Parnaíba 333.056 4.152.865 12,5 325 2.468,0 

Atlântico Nordeste Ocidental 274.350 6.244.419 22,8 397 2.005,0 

Atlântico Nordeste Oriental 286.761 24.077.328 84,0 218 285,5 

São Francisco 638.466 14.289.953 22,4 875 1.931,0 

Atlântico Leste 388.160 15.066.543 38,8 271 567,2 

Paraná 879.873 61.290.272 69,7 4.390 2.258,8 

Paraguai 363.445 2.165.938 6,0 1.023 14.894,9 

Uruguai 174.801 3.922.873 22,4 550 4.421,5 

Atlântico Sudeste 214.629 28.236.436 131,6 1.325 1.479,8 

Atlântico Sul 186.673 12.976.554 69,5 513 1.246,7 

Brasil 8.539.508 190.690.625 22,3 78.602 12.999,0 

Média por RH 711.626 15.890.885 41 6.550 21.366,7 

Fonte: ANA (2015) 

 

2.2.2 Disponibilidade Hídrica no Tocantins-Araguaia 

A região hidrográfica Tocantins-Araguaia (Figura 4), delimitada a leste pela 

bacia Amazônica e a oeste pela bacia Atlântico Nordeste Ocidental, abrange uma área 

de aproximadamente 920 mil km², o que corresponde a 10,8% do território nacional. 

Essa região estende-se por seis unidades federativas: Goiás (21%), Tocantins (30%), 

Pará (30%), Maranhão (4%), Mato Grosso (15%) e Distrito Federal (0,1%). A maior 

parte de sua área está localizada na região Centro-Oeste, desde as nascentes dos 
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rios Araguaia e Tocantins até sua confluência, seguindo em direção à região Norte, 

onde deságua (ANA, 2015). 

O rio Araguaia, principal afluente da bacia, possui 2.600 km de extensão e 

abriga a Ilha do Bananal, a maior ilha fluvial do mundo. Já o rio Tocantins, que nasce 

no Planalto de Goiás, a cerca de 1.000 metros de altitude, é formado pelos rios das 

Almas e Maranhão e percorre 1.960 km até sua foz. A confluência entre o rio Tocantins 

e o Furo de Breves forma a Baía do Marapatá, que, por sua vez, integra o rio Pará. 

A sua disponibilidade hídrica é de 3.098 m³/s, ou seja, 4% da disponibilidade 

hídrica nacional (ANA, 2015). A expansão agrícola na região é uma das principais 

atividades antrópicas que tem contribuído com a redução da cobertura original 

(desmatamento) dos biomas Amazônico e Cerrado na RH. Conforme a publicação 

“Conjuntura dos Recursos Hídricos do Brasil 2013”, a RH Tocantins-Araguaia 

apresenta ainda 39% e 60% de área de cobertura de vegetação remanescente do 

bioma Amazônico e de Cerrado, respectivamente, em relação a sua área original 

(ANA, 2015). 

 

Figura 4: Unidades Hidrográficas e principais cidades da RH Tocantins-Araguaia 
Fonte: ANA (2015) 
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2.3 MUDANÇAS CLIMÁTICAS 

2.3.1 Histórico da Ciência Climática 

As bases científicas para o estudo da ciência climática remontam ao século 

XIX. O físico francês Joseph Fourier foi pioneiro ao propor, em 1824, a ideia de que a 

atmosfera terrestre retém calor, comparando-a a uma estufa. Ele sugeriu que a 

atmosfera age como uma barreira que mantém a superfície do planeta aquecida 

(Fourier, 1824). Posteriormente, o cientista britânico John Tyndall avançou nessa 

compreensão ao descobrir, em 1859, que certos gases, como o dióxido de carbono 

(CO₂) e o vapor d'água, têm a capacidade de absorver e reemitir calor. Seus 

experimentos foram fundamentais para elucidar o papel desses gases na regulação 

da temperatura terrestre (Tyndall, 1859). Em 1896, o químico sueco Svante Arrhenius 

quantificou o impacto do CO₂ no clima. Seus resultados demonstraram que a 

duplicação das concentrações de CO₂ na atmosfera poderia elevar a temperatura 

média da Terra de 5 a 6°C. Arrhenius também sugeriu que a queima de combustíveis 

fósseis poderia contribuir para o aumento das concentrações desse gás e, 

consequentemente, para o aquecimento global (Arrhenius, 1896). 

No século XX, o consenso científico e ações globais evoluíram 

significativamente. O Painel Intergovernamental sobre Mudanças Climáticas (IPCC) 

foi estabelecido pela Organização das Nações Unidas (ONU), em 1988, para avaliar 

e sintetizar o conhecimento científico relacionado ao clima. Desde seu primeiro 

relatório, publicado em 1990, o IPCC tornou-se a principal autoridade global no tema, 

fornecendo avaliações abrangentes e atualizadas sobre as causas, impactos e 

soluções para o aquecimento global (IPCC, 1990). No século XXI, os esforços 

internacionais para combater as mudanças climáticas ganharam impulso com o 

Acordo de Paris, adotado em 2015 no âmbito da ONU. Esse acordo estabeleceu a 

meta de limitar o aumento da temperatura média global a menos de 2°C acima dos 

níveis pré-industriais, com esforços adicionais para restringir o aquecimento a 1,5°C. 

 

2.3.2 Limiar de 1,5°C no Aquecimento Global 

O aquecimento global refere-se ao aumento gradual da temperatura média da 

atmosfera e dos oceanos próximos à superfície da Terra, um fenômeno amplamente 

documentado pela ciência climática (Masson-Delmotte, 2021). O limiar de 1,5° C 

estabelecido pela comunidade internacional no Acordo de Paris refere-se a um 

aquecimento médio global sustentado ao longo do tempo, e não a variações anuais, 
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que podem apresentar flutuações acima ou abaixo da tendência de longo prazo 

(Nações Unidas, 2015). Nesse contexto, estudos para o ano de 2022 demonstram que 

as temperaturas atingiram 1,3°C acima dos níveis pré-industriais (Jones, 2023). No 

ano seguinte, os valores mensais também registraram pelo menos 1,2 °C acima da 

média correspondente ao período de 1850 a 1900. Embora o início de 2023 tenha 

apresentado temperaturas semelhantes às de 2021 e 2022, o fim do evento La Niña 

marcou o início de uma trajetória distinta. Na segunda metade do ano, as temperaturas 

tornaram-se mais extremas, impulsionadas pelo fortalecimento do El Niño. Os últimos 

sete meses de 2023 estabeleceram novos recordes de temperatura, incluindo julho, 

que registrou a maior média absoluta já medida na Terra, e setembro, com a maior 

anomalia mensal já documentada. Grande parte da variação de temperatura entre 

2022 e 2023 foi atribuída à transição de La Niña para El Niño, combinada com outros 

fatores de variabilidade natural, como o aquecimento do Atlântico Norte, além de 

contribuições modestas de outros elementos. Em 2024, o El Niño continuou a 

influenciar o aumento de temperaturas no primeiro semestre (Figura 5), antes de 

enfraquecer em junho (Berkeley Earth, 2024). 

 

 

Figura 5: temperatura média mensal da Terra ao longo das décadas 

Fonte: Berkeley Earth (2024) 
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A longo prazo, o aquecimento global induzido pelas atividades humanas tem 

elevado gradualmente as temperaturas à taxa de aproximadamente 0,2°C por década 

(Berkeley Earth, 2024). A relevância dessas tendências intensifica-se com os dados 

do Copernicus Data Space Ecosytem, que indicam que 2024 foi o primeiro ano a 

ultrapassar a marca de 1,5°C acima dos níveis pré-industriais, sendo as emissões de 

gases de efeito estufa as principais responsáveis por esse aquecimento (Tollefson, 

2025). 

 

2.3.3 Painel Intergovernamental de Mudanças Climáticas – IPCC 

O termo ‘mudanças climáticas’ foi popularizado em 1998 pela Organização 

Meteorológica Mundial (OMM) e pelo Programa das Nações Unidas para o Meio 

Ambiente (PNUMA), com o apoio da comunidade científica e o endosso da 

Assembleia Geral da ONU. Outrossim, o Painel Intergovernamental sobre Mudanças 

Climáticas (IPCC) foi criado com a missão de fornecer avaliações objetivas e 

cientificamente embasadas sobre o conhecimento existente a respeito das mudanças 

climáticas. Para isso, o IPCC reúne, analisa e sintetiza pesquisas científicas de todo 

o mundo, produzindo relatórios de avaliação abrangentes que servem como 

referências para governos, formuladores de políticas públicas e cientistas na 

compreensão desse desafio global. 

 

2.3.4 Relatórios de Avaliação do IPCC – AR 

O Primeiro Relatório de Avaliação do IPCC (FAR), lançado em 1990, 

estabeleceu as bases científicas para a compreensão das mudanças climáticas, 

destacando o aumento das concentrações de gases de efeito estufa (GEE’s) na 

atmosfera e a correlação com o aquecimento global. O Segundo Relatório (SAR), 

publicado em 1995, reforçou a influência humana no clima e forneceu subsídios para 

o Protocolo de Kyoto, que estabeleceu metas de redução de emissões para países 

desenvolvidos. Já o Terceiro Relatório (TAR), em 2001, introduziu cenários futuros e 

destacou a necessidade de ações robustas, enquanto o Quarto Relatório (AR4), em 

2007, consolidou a certeza científica sobre a influência humana no clima, sendo um 

dos pilares para o Prêmio Nobel da Paz concedido ao IPCC naquele ano. 

O Quinto Relatório (AR5), publicado em 2014, reforçou a urgência de limitar o 

aquecimento global a 2°C acima dos níveis pré-industriais e serviu como base 

científica para o Acordo de Paris, em 2015. Por fim, o Sexto Relatório (AR6), divulgado 
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entre 2021 e 2023, trouxe conclusões ainda mais alarmantes, afirmando que a 

influência humana no clima é "inequívoca" e que o aquecimento global já atingiu 1,1°C 

acima dos níveis pré-industriais. O relatório ressaltou a necessidade de cortes 

profundos e imediatos nas emissões para limitar o aquecimento a 1,5°C, evitando os 

piores impactos, como eventos climáticos extremos, elevação do nível do mar e perda 

de biodiversidade (https://www.ipcc.ch/about/history/). 

 

2.3.5 Projeto de Intercomparação de Modelos Acoplados – CMIP 

O objetivo do Coupled Model Intercomparison Project (CMIP) é entender 

melhor as mudanças climáticas passadas, presentes e futuras decorrentes da 

variabilidade natural, não forçada ou em resposta a mudanças na força radiativa em 

um contexto multimodelo. Este entendimento inclui avaliações do desempenho dos 

modelos durante o período histórico e quantificações das causas do spread 

(dispersão) em projeções futuras (https://www.wcrp-climate.org/wgcm-cmip). O grau 

de dispersão nas projeções climáticas futuras ocorre em algumas regiões, devido a 

uma combinação de variações na sensibilidade climática que determina a magnitude 

da resposta global média, e grandes variações nos padrões espaciais de mudança – 

particularmente para a precipitação (McSweeney e Jones, 2016). O projeto CMIP é 

realizado em várias fases, chamadas de fases de modelagem, que ocorrem em 

intervalos regulares. Durante cada fase, os centros de modelagem participantes 

executam seus modelos climáticos acoplados com base em cenários de emissão 

específicos, como os cenários de emissão do IPCC (https://wcrp-cmip.org/cmip-

overview/). 

O CMIP começou em 1995 sob os auspícios do Working Group on Coupled 

Modelling (WGCM). O primeiro conjunto de experimentos comuns envolveu a 

comparação da resposta do modelo a uma força idealizada - uma taxa constante de 

aumento que foi realizada usando um aumento de CO2 de 1% ao ano composto. 

Desde então, vários experimentos CMIP foram desenvolvidos. Os experimentos 

continuam a incluir integrações usando forçantes idealizadas para facilitar o 

entendimento. Eles agora incluem integrações forçadas com estimativas das 

mudanças nas forçantes radiativas históricas, bem como estimativas das mudanças 

futuras. 

A primeira fase (CMIP1) ocorreu entre 1995 e 1999 com a premissa de 

melhorar a compreensão do clima global e seus processos por meio da comparação 

https://www.ipcc.ch/about/history/
https://www.wcrp-climate.org/wgcm-cmip
https://wcrp-cmip.org/cmip-overview/
https://wcrp-cmip.org/cmip-overview/
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de modelos climáticos. A segunda fase do (CMIP2) ocorreu entre 1999 e 2004, em 

que foram realizadas simulações abrangentes e aprimoradas de modelos climáticos, 

comparando as respostas desses modelos a diferentes forçantes climáticas. Nessas 

duas primeiras fases, o CMIP envolveu a operação de 18 GCM’s em duas 

configurações diferentes: uma “operação de controle” sob condições pré-industriais 

constantes e uma “operação perturbada”, na qual o dióxido de carbono atmosférico 

aumentou 1% ao ano durante 80 anos. 

Entre 2005 e 2006, o CMIP3 expandiu significativamente os resultados de 

dados do projeto, contando com a participação de 25 modelos. Esta trajetória 

ascendente continuou com o CMIP5 e o CMIP6, cada um envolvendo mais modelos 

e mais experimentos do que seu antecessor. O CMIP6 é a fase mais recente, e 

consiste nas “execuções” de cerca de 100 modelos climáticos, sendo produzidos em 

49 grupos de modelagem distintos. Foram produzidos cenários para diferentes faixas 

de emissão de carbono na atmosfera. Os cenários, já atualizados, são chamados de 

SSP1-2.6, SSP2-4.5, SSP4-6.0 e SSP5-8.5. Esses cenários foram produzidos e 

distribuídos através da Earth System Grid Federation, incluindo variáveis sociais, 

como o aumento populacional, econômico e bioecológico. As execuções dos GCM’s 

do CMIP6 foram desenvolvidas em apoio ao 6º Relatório de Avaliação do IPCC (Painel 

Intergovernamental sobre Mudanças Climáticas) (WCRP, 2024). 

No contexto do CMIP6, o período “historical" refere-se ao intervalo de tempo 

de 1850 a 2014, durante o qual os modelos climáticos são calibrados e validados em 

relação aos dados observados. Isso permite a avaliação da precisão dos modelos em 

reproduzir o clima passado. Além disso, o CMIP6 utiliza cenários SSP (Shared 

Socioeconomic Pathways), que são projeções futuras que combinam diferentes 

trajetórias de desenvolvimento socioeconômico com diversos níveis de mitigação de 

gases de efeito estufa (GEE’s). Esses cenários ajudam a explorar uma ampla gama 

de possíveis futuros climáticos, considerando variáveis como crescimento 

populacional, desenvolvimento econômico, avanço tecnológico e políticas ambientais, 

facilitando a análise dos impactos e adaptações potenciais frente às mudanças 

climáticas (IPCC, 2021). 

Os resultados dessas simulações são compartilhados e compilados em um 

banco de dados central para análise. Os resultados do CMIP são amplamente 

utilizados na comunidade científica para entender as mudanças climáticas, examinar 

a variabilidade climática, avaliar os impactos das emissões de gases de efeito estufa 
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e informar políticas relacionadas ao clima. Esses dados também são usados no 

desenvolvimento dos relatórios de avaliação do IPCC, fornecendo uma base científica 

sólida para as conclusões e recomendações apresentadas nos relatórios. 

 

2.3.6 Modelo de Circulação Geral - GCM 

A previsibilidade atmosférica possui um limite teórico de aproximadamente 

duas semanas, devido à natureza caótica da atmosfera terrestre. Para superar essa 

limitação e realizar projeções climáticas de longo prazo, são utilizados os Modelos de 

Circulação Geral (GCM’s). Os GCM’s são modelos climáticos que possibilitam o 

cálculo do movimento atmosférico em escala hemisférica e global (McWilliams, 2019). 

Esses modelos são compostos por dois componentes principais: um núcleo dinâmico, 

responsável por simular o movimento de fluidos em grande escala por meio de 

equações primitivas, e um modelo físico, que representa processos climáticos 

significativos, como transferência radiativa, formação de nuvens e convecção, além 

de incorporar um conjunto de condições de contorno (Edwards, 2011; Calvin et al., 

2023). 

A história de modelos climáticos remonta ao início do século XX, por volta de 

1904, quando o cientista Vilhelm Bjerknes desenvolveu o "teorema da circulação 

generalizada". Ele propôs que a atmosfera pode ser entendida como um sistema de 

circulação de massa de ar, impulsionado pela radiação solar e defletido pela rotação 

da Terra. Ademais, esse sistema era expresso mediante as diferenças locais de 

velocidade, densidade, pressão, temperatura e umidade do ar (Gramelsberger, 2010). 

Em 1922, Lewis Richardson publicou um sistema numérico para previsão do 

tempo, usando versões simplificadas das equações de Bjerknes. A proposição do 

trabalho consistiu em dividir um território em uma grade de células, cada uma 

contendo dados específicos sobre pressão do ar, temperatura e outras variáveis 

meteorológicas (Gleditsch, 2020). Richardson aplicou seu método numérico para 

calcular mudanças na pressão atmosférica e nos ventos em duas localidades da 

Europa Central. Entretanto, devido à complexidade dos cálculos para a época, os 

resultados foram incertos e não realistas (Costa, 2021). 

Somente na década de 1930, matemáticos identificaram as falhas no método 

numérico usado de Richardson, particularmente em relação ao equilíbrio entre o 

campo de pressão e vento nas condições iniciais do modelo previsor. O matemático 

John Von Neumann iniciou o desenvolvimento do Electronic Numerical Integrator and 
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Computer (ENIAC) no Instituto de Estudos Avançados de Princeton, nos Estados 

Unidos. O ENIAC, concluído ao final da Segunda Guerra Mundial, foi inicialmente 

utilizado para cálculos complexos relacionados ao desenvolvimento de armas 

nucleares. Após a guerra, von Neumann direcionou o uso do computador para a 

previsão meteorológica, retomando as pesquisas de Bjerknes (Balaji, 2015). 

Ao final da década de 1940, as primeiras previsões computadorizadas foram 

efetuadas a partir dos estudos de von Neumann em conjunto com o meteorologista 

Jule Charney. Eles simplificaram modelos matemáticos complexos, permitindo que os 

computadores da época realizassem previsões eficientes. O grupo obteve resultados 

realistas, destacando-se um experimento em que modelaram os efeitos de uma 

extensa cadeia de montanhas sobre o fluxo de ar em um continente (Weart, 2010). 

Os primeiros modelos meteorológicos eficientes foram projetados para prever 

o clima em um período de até três dias. Em 1956, Norman Phillips realizou a primeira 

simulação de longo prazo, cobrindo um mês. Phillips baseou sua simulação em um 

fluxo de ar ao longo das linhas de latitude da Terra, introduzindo pequenas 

perturbações aleatórias e uma onda com comprimento de 6.000 km. Os resultados 

mostraram uma correspondência entre as trocas de energia simuladas da onda e os 

dados observados na atmosfera real (Phillips, 1956). 

A partir dessa contextualização, ao longo das últimas décadas, os GCMs 

evoluíram significativamente, com avanços na capacidade de simulação do sistema 

climático global. Entre os modelos mais utilizados, destacam-se o ACCESS 

(Australian Community Climate and Earth System Simulator), o CESM2 (Community 

Earth System Model, versão 2), o CMCC (Centro Euro-Mediterraneo sui Cambiamenti 

Climatici), o FGOALS (Flexible Global Ocean-Atmosphere-Land System Model), o 

MPI-ESM1 (Max Planck Institute Earth System Model, versão 1) e o GFDL 

(Geophysical Fluid Dynamics Laboratory). Cada um desses modelos possui múltiplas 

versões e variações, adaptadas para diferentes aplicações e melhorias em processos 

físicos. 

O ACCESS possui várias versões, como o ACCESS-CM2 e o ACCESS-

ESM1.5, desenvolvidos pelo Bureau of Meteorology da Austrália em colaboração com 

a CSIRO. O ACCESS-CM2 é focado em simulações climáticas, com melhorias na 

representação de processos atmosféricos e oceânicos, enquanto o ACCESS-ESM1.5 

inclui um módulo de sistema terrestre para simular o ciclo do carbono (Scoccimarro et 

al., 2022). 
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O CESM2 é uma evolução do CESM1, com versões como o CESM2-WACCM 

(Whole Atmosphere Community Climate Model) e o CESM2-CAM6 (Community 

Atmosphere Model, versão 6). O CESM2-WACCM inclui a simulação da atmosfera 

superior, sendo útil para estudos de química atmosférica e interações estratosfera-

troposfera. Já o CESM2-CAM6 apresenta melhorias na parametrização de nuvens e 

aerossóis, além de uma representação mais precisa do ciclo hidrológico (Danabasoglu 

et al., 2020). 

O CMCC possui versões como o CMCC-CM2 e o CMCC-ESM2. O CMCC-CM2 

é focado em simulações climáticas de alta resolução, com melhorias na representação 

de processos oceânicos e atmosféricos. O CMCC-ESM2 inclui um módulo de sistema 

terrestre para simular interações entre o clima e o ciclo do carbono, sendo utilizado 

em estudos de impactos climáticos na região do Mediterrâneo (Lovato et al., 2022). 

O FGOALS possui versões como o FGOALS-g3 e o FGOALS-s3. O FGOALS-

g3 é uma versão de grade grossa, utilizada para simulações climáticas de longo prazo, 

enquanto o FGOALS-s3 é uma versão espectral com maior resolução, adequada para 

estudos de variabilidade climática regional. Ambas as versões incluem melhorias na 

representação do acoplamento oceano-atmosfera e na simulação de monções (Bao 

et al., 2013; Li et al., 2020). 

O MPI-ESM1 possui versões como o MPI-ESM1-2-HR (alta resolução) e o MPI-

ESM1-2-LR (baixa resolução). O MPI-ESM1-2-HR é utilizado para simulações 

climáticas de alta resolução, com foco em processos regionais, enquanto o MPI-

ESM1-2-LR é mais adequado para simulações de longo prazo e estudos de 

variabilidade climática global. Ambas as versões incluem melhorias na representação 

de processos oceânicos e atmosféricos (Gutjahr et al., 2019). 

O GFDL possui versões como o GFDL-ESM4 e o GFDL-CM4. O GFDL-ESM4 

inclui um módulo de sistema terrestre para simular o ciclo do carbono e sua interação 

com o clima, enquanto o GFDL-CM4 é focado em simulações climáticas de alta 

resolução, com melhorias na representação de gelo marinho e aerossóis. Essas 

versões têm sido amplamente utilizadas em projeções climáticas globais e regionais 

(Dunne et al., 2020; Held et al., 2019). 

 

2.3.7 Cenários Climáticos de Modelos Climáticos 

Os modelos climáticos do CMIP1 foram forçados com concentrações de GEE’s 

específicas selecionadas para representar um estado de equilíbrio próximo às 
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condições pré-industriais. Já no CMIP2 e CMIP3, foram utilizados cenários específicos 

desenvolvidos pelo IPCC, denominados Special Report on Emissions Scenarios 

(SRES), que representam diferentes trajetórias de emissões de GEE e outros 

forçantes climáticos, baseando-se em pressupostos variados de desenvolvimento 

humano, tecnologia, população e políticas. Esses cenários dividem-se em quatro 

famílias principais: A1 (rápido crescimento econômico com emissões atingindo o pico 

por volta de 2050 e depois diminuindo rapidamente), A2 (desenvolvimento desigual 

com aumento contínuo das emissões e falta de cooperação global para mitigação), 

B1 (desenvolvimento sustentável com redução gradual das emissões, resultando em 

baixas emissões de GEE), e B2 (desenvolvimento regionalizado com foco em 

sustentabilidade local e conservação de recursos, representando um cenário 

intermediário entre A1 e B1). 

Para o CMIP5, os cenários não foram desenvolvidos pelo IPCC, ao invés disso, 

o IPCC catalisou o desenvolvimento de novos cenários pela comunidade científica, 

com a intenção de que os cenários e as pesquisas sustentassem o AR5. Desse modo, 

foram selecionadas quatro vias de concentrações representativas (RCP’s), sendo 

nomeados, conforme os níveis alvos de forçamento radioativos até 2100, os quatro 

RCP’s selecionados foram considerados representativos da literatura e incluíram um 

cenário de mitigação levando a um nível de forçamento muito baixo (RCP2.6), dois 

cenários de estabilização média (RCP4.5/RCP6.0) e um cenário de emissão de linha 

de base muito alto (RCP8.5). O RCP2.6 é um cenário de mitigação que representa 

um futuro de baixas emissões; RCP4.5 e RCP6.0 são cenários intermediários que 

representam um futuro de emissões moderadas; RPC8.5 representa um futuro com 

altas emissões de GEE, em que as políticas de mitigação são inexistentes (Van 

Vuuren et al., 2011). 

As simulações do CMIP6 foram baseadas nos cenários de Caminhos 

Socioeconômicos Compartilhados (SSP’s), que consistem em cinco trajetórias 

principais, combinadas com os cenários RCP’s. SSP1 - Sustentabilidade (baixos 

desafios para mitigação e adaptação): o mundo avança rumo a um desenvolvimento 

sustentável, priorizando inclusão social e limites ambientais. SSP2 - Caminho 

Intermediário (desafios médios para mitigação e adaptação): segue tendências 

históricas sem mudanças significativas. SSP3 - Desigualdade Regional (altos desafios 

para mitigação e adaptação): nacionalismo e conflitos regionais reduzem a 

cooperação global, com foco em questões domésticas. SSP5 - Desenvolvimento 
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Movido a Combustíveis Fósseis (altos desafios para mitigação, baixos para 

adaptação): prioriza crescimento econômico acelerado, inovação tecnológica e 

dependência de combustíveis fósseis, com forte integração global de mercados (Riahi 

et al., 2017). 

Os cenários de simulação utilizados no CMIP6 combinam os SSP’s (Caminhos 

Socioeconômicos Compartilhados) com os RCPs (Cenários de Concentração 

Representativa), resultando em quatro trajetórias principais: 

1) SSP1-2.6 (corresponde ao RCP2.6): Um cenário de mitigação com redução 

significativa das emissões, resultando em baixos níveis de concentração de 

gases de efeito estufa (GEE) na atmosfera. 

2) SSP2-4.5 (corresponde ao RCP4.5): Um cenário em que as emissões 

aumentam, mas são estabilizadas posteriormente, com concentrações de 

GEE atingindo o pico em meados do século e diminuindo gradualmente. 

3) SSP3-7.0 (corresponde ao RCP6.0): Um cenário com emissões relativamente 

altas ao longo do século XXI, resultando em concentrações atmosféricas de 

GEE mais elevadas do que no RCP4.5. 

4) SSP5-8.5 (corresponde RCP8.5): Um cenário de altas emissões, com 

aumento rápido e contínuo das concentrações de GEE na atmosfera, 

representando um futuro de alto aquecimento global. 

Para analisar as mudanças climáticas com precisão, é necessário adotar um 

período de referência (historical), que serve para caracterizar a sensibilidade da área 

de estudo ao clima atual. Segundo o IPCC (1992), esse período deve ser 

representativo do clima médio recente da região e ter duração suficiente para 

abranger uma variedade de variações climáticas, incluindo eventos extremos, como 

secas severas ou estações frias. Essa abordagem permite uma avaliação robusta das 

mudanças climáticas futuras (Calvin et al., 2023). 

No AR6, foram apresentadas projeções de mudanças de longo prazo para 

diversas variáveis climáticas, como a precipitação, em relação ao período de 

referência (1995-2014). Essas projeções foram representadas em mapas por meio de 

cores e hachuras (Figura 6). As cores indicam regiões com alta relação sinal-ruído, 

onde há uma resposta robusta e consistente entre a maioria dos modelos climáticos, 

tornando as projeções mais confiáveis, tanto na direção (sinal) quanto na magnitude 

das mudanças. Já as hachuras destacam áreas com baixa relação sinal-ruído, onde 
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há maior incerteza, pois os modelos podem divergir na direção ou na intensidade das 

mudanças, refletindo a complexidade e a variabilidade natural do clima. A seleção 

estratégica de GCM’s para estudos de impacto climático é, portanto, um elemento 

crucial do desenho experimental, considerando também o desempenho dos modelos 

(McSweeney e Jones, 2016). 

 

Figura 6: Mudanças projetadas de longo prazo (2081-2100) na sazonalidade da 
precipitação em média entre os modelos CMIP6 disponíveis (número fornecido no 

canto superior direito de cada painel) no cenário SSP1-2.6 (b), SSP2-4.5 (c) e SSP5-
8.5 (d), respectivamente. A climatologia simulada de 1995–2014 é mostrada no 

painel (a). 
Fonte: Adaptado de AR6 

 

2.4 MODELOS HIDROLÓGICOS 

Um modelo hidrológico é utilizado para se antecipar aos eventos, por exemplo, 

avaliando o impacto da urbanização em uma bacia hidrográfica, previsão de 

enchentes, impacto da alteração do curso de um rio, bem como, ocorrência de eventos 

extremos estatisticamente possíveis (Tucci, 2005). Yevjevich (1993), ao fazer uma 

análise das contribuições para a hidrologia no século passado, revelou dois tipos 

básicos de desenvolvimento. Primeiro, o autor observou o que chamou de “hidrologia 

utilitária” (também chamada Hidrologia Aplicada ou Hidrologia Técnica), e o 

surgimento mais recente do que chamou de Hidrologia Teórica (também chamada 
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Hidrologia Básica, Científica, Analítico-matemática), como sendo os dois polos de todo 

o espectro hidrológico de atividades e abordagens. O outro tipo de desenvolvimento 

é a divisão de investigações hidrológicas em Hidrologia Física (determinística) e 

Hidrologia Estatística (estocástica). 

Singh (1995) argumenta que os modelos hidrológicos possuem cinco 

componentes: geometria do sistema (bacia hidrográfica), entrada, leis governantes, 

condições de contorno e saída. Esses elementos são combinados de diferentes 

formas, dependendo do tipo de modelo, permitindo classificá-los como concentrados 

ou distribuídos, assim como, determinísticos ou estocásticos ou mistos. 

Um modelo concentrado é representado por equações que desconsideram a 

variabilidade espacial de processos, entradas, condições de contorno e características 

geométricas do sistema (como bacias hidrográficas). Esses modelos combinam 

equações diferenciais baseadas em leis hidráulicas simplificadas com equações 

algébricas empíricas. Exemplos de métodos empíricos incluem o SCS-CN (Soil 

Conservation Service Curve Number, 1954), o SWMM (Storm Water Management 

Model, 2005) e o HEC-HAS (Hydrologic Engineering Center – Hydraulic Analysis 

System, 1995). Já os modelos distribuídos consideram explicitamente a variabilidade 

espacial desses elementos (Singh, 1995). Contudo, a ausência de dados de campo 

frequentemente limita o desenvolvimento de modelos distribuídos completos. Tucci 

(2005) destaca que não existem modelos totalmente distribuídos, já que a 

discretização numérica introduz características de modelos concentrados em 

subdivisões menores. Exemplos de modelos distribuídos incluem SHE (Systeme 

Hydrologique Europeen, 1986) e WATFLOOD (Kouwen, 2000; Kouwen et al., 1993). 

Em conformidade, modelos determinísticos ignoram a probabilidade, operando 

com leis definidas. Segundo Dooge (1973), um sistema é determinístico quando, para 

a mesma entrada, sempre é produzida a mesma saída. Em contraste, um modelo 

estocástico é aquele que incorpora a probabilidade e considera a chance de 

ocorrência das variáveis envolvidas no processo (Chow, 1964), isto é, apresenta uma 

relação estatística entre entrada e saída, sendo dependente de condições iniciais 

idênticas (Tucci, 2005). Singh (1995) destaca que a maioria dos modelos é 

determinista, com raros casos de modelos completamente estocásticos. Muitos 

combinam elementos probabilísticos e determinísticos, podendo ser caracterizados 

como semi-determinísticos ou semi-estocásticos. Modelos estocásticos têm como 
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vantagem fornecer aos tomadores de decisão uma estimativa das incertezas nas 

previsões (Daniel, 2011). 

 

2.5 MODELO CHUVA-VAZÃO 

Há uma evidente busca por um modelo que represente de maneira satisfatória 

os fenômenos chuva-vazão, mas que também o faça a partir do menor número de 

parâmetros. Ao longo da história, houve cerca de 280 modelos chuva-vazão, além de 

pequenas modificações dos modelos oriundos destes modelos (Peel e McMahon, 

2020). A superabundância de modelos chuva-vazão, conforme destacado por Clark et 

al. (2011), evidencia uma insuficiente compreensão científica da dinâmica ambiental 

do ciclo hidrológico. Essa lacuna pode ser atribuída às dificuldades inerentes à 

medição e representação da heterogeneidade presente nos sistemas naturais, que 

são intrinsecamente complexos e variáveis, de região para região. 

Além disso, Saavedra et al. (2022) falam que é preciso identificar as prioridades 

da modelagem e as limitações da disponibilidade de dados, tempo e orçamento para 

modelos ajudarem a restringir as escolhas e garantir que o modelo seja o melhor para 

o propósito pretendido. Os modelos chuva-vazão, por representarem processos 

hidrológicos, podem ser classificados: quanto aos tipos de dados abordados, sejam 

eles determinísticos ou estocásticos; quanto à estrutura modelos empíricos, 

conceituais ou físicos; quanto à variabilidade espacial, modelos concentrados, 

distribuídos e semi-distribuídos. 

Para Melsen et al. (2016), a escolha da estrutura do modelo representa o 

principal desafio na modelagem chuva-vazão. Os modelos empíricos, de estrutura 

mais simples, baseiam-se em relações diretas entre entrada e saída, caracterizando 

uma abordagem de modelagem caixa-preta, que não considera explicitamente os 

processos internos do sistema. Já os modelos conceituais utilizam equações 

simplificadas para representar o armazenamento de água na bacia hidrográfica, 

analisando parcialmente os fluxos hídricos por meio de compartimentos 

interconectados, o que configura uma modelagem caixa-cinza. Por fim, os modelos 

físicos, ou caixa-branca, empregam leis e equações físicas baseadas em respostas 

hidrológicas reais, exigindo uma compreensão detalhada dos processos envolvidos. 

Cada tipo de estrutura apresenta vantagens e desvantagens, dependendo da 

finalidade do modelo e do nível de detalhamento desejado (Beven, 2011; Peel e 

McMahon, 2020).  



36 
 

 

Segundo Pechlivanidis et al. (2013), a calibração dos parâmetros de qualquer 

modelo será baseada na qualidade do monitoramento e, portanto, os dados de 

entrada são importantes. Neste sentido, o aspecto mais desafiador da validação de 

modelos com dados observados está contido em saber até onde os modelos são 

confiáveis e o quão bem podem representar o sistema abordado (Andréassian et al., 

2004; Fekete et al., 2002). Portanto, os modelos chuva-vazão trazem um conjunto de 

benefícios para a hidrologia, visto que são adaptáveis à heterogeneidade de cada 

bacia, demandam poucos dados e são tolerantes a possíveis falhas (Devia et al., 

2015). 

 

2.5.1 Método Racional 

A primeira descrição formal de um modelo chuva-vazão foi proposta por 

Mulvaney (1851), um marco na hidrologia que estabeleceu as bases para a 

modelagem hidrológica. Esse método calcula a vazão máxima (Qmax) de pequenas 

bacias hidrográficas com base na Equação 1. 

Qmax = C. I. A          (1) 

Em que C é o coeficiente de escoamento superficial (adimensional), que 

representa a fração da precipitação que contribui para o escoamento, considerando 

perdas como infiltração e evapotranspiração; I é intensidade máxima de precipitação 

(em mm/h) correspondente ao evento; e A é a área da bacia hidrográfica (em hectares 

ou km²). 

O método racional foi pioneiro por sua simplicidade e aplicabilidade prática, 

especialmente em projetos de drenagem urbana e no dimensionamento de estruturas 

hidráulicas. No entanto, suas limitações são evidentes: ele é mais adequado para 

bacias pequenas e homogêneas, onde o tempo de concentração é relativamente 

curto, e não considera a variabilidade temporal e espacial da precipitação ou a 

complexidade dos processos hidrológicos. 

 

2.5.2 Hidrograma Unitário 

Outro modelo matemático, que inspirou diversas outras modificações, é o 

hidrograma unitário de Sherman (1932), que utiliza a chuva efetiva unitária de 1mm, 

com intensidade constante no tempo e uniformemente distribuída no espaço e sobre 

a bacia hidrográfica (Figura 7). 
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Figura 7: Hidrograma unitário triangular 

 

Considerando a bacia hidrográfica como um sistema linear e invariante no 

tempo, é possível aplicar os princípios da proporcionalidade e da superposição. O 

princípio da proporcionalidade estabelece que o hidrograma resultante de uma chuva 

efetiva com determinada duração é diretamente proporcional à sua intensidade. 

Portanto, é possível calcular a resposta da bacia hidrográfica a eventos de chuvas 

diferentes, pois a resposta é uma soma das respostas individuais (superposição). Se 

o sistema é linear e invariante (bacia hidrográfica), as vazões y(t) são representadas 

pela convolução entre a chuva x(t) e a função de transferência ou a função da resposta 

impulsional, h(u), dada pela Equação 2. 

𝑦(𝑡) = ∫ ℎ(𝑢)𝑥(𝑡 − 𝑢)𝑑𝑢
𝑡

0
        (2) 

Outros modelos que descrevem a relação chuva-vazão têm sido amplamente 

discutidos na literatura desde que Sherman (1932) introduziu o conceito do 

hidrograma unitário. Entre as contribuições, destacam-se os trabalhos de (Rodriguez, 

1967), Papazafiriou (1976), Goring (1984), Labat et al. (2000) e Blanco et al. (2005). 

Nesses modelos, as hipóteses de linearidade e invariância no tempo (Equação 2), são 

justificadas pelas pequenas dimensões das bacias analisadas. Então, aplica-se a 

convolução aos dados de entrada x(t) e à resposta impulsional do sistema h(t), 

resultando nos dados de saída y(t). No contexto dos sistemas hidrológicos, a entrada 

é representada pela precipitação P (mm) e a saída pela vazão Q (m³/s), que é 

expressa pela forma discreta da integral de convolução, conforme a Equação 3. 

𝑄𝑖 = ∑ ℎ𝑗𝑃𝑖−𝑗+1, 𝑐𝑜𝑚 𝑖 = 1,2,3 … 𝑛 + 𝑚 + 1𝑚
𝑗=1      (3) 
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onde m é o comprimento da memória do sistema que representa o efeito de 

uma chuva continua que se estende por m intervalos de duração T. 

 

2.6 REDES NEURAIS ARTIFICIAIS 

Nesta Seção são discutidos os conceitos básicos sobre neurônio biológico e 

artificial, o funcionamento das redes neurais, incluindo as fases de treinamento e 

ativação. Ademais, a descrição de redes do tipo Autorregressiva Não Linear com 

Entradas Exógenas (NARX) é apresentada. 

 

2.6.1 Breve Histórico 

As primeiras pesquisas para o desenvolvimento de computadores baseados no 

comportamento no cérebro humano datam de 1943, quando McCulloch e Pitts 

publicaram o primeiro estudo descrevendo as redes neurais, unificando os estudos de 

neurofisiologia e lógica matemática e apresentaram um modelo matemático baseado 

nos neurônios biológicos (McCulloch & Pitts, 1943). 

Em 1949, a publicação do livro The Organization of Behavior de Hebb 

representou um marco importante para o estudo das redes neurais. Nele, Hebb 

introduziu pela primeira vez uma regra de aprendizagem para a modificação sináptica 

em neurônios biológicos. Segundo Hebb (1949), a conectividade cerebral é 

continuamente ajustada à medida que um organismo aprende tarefas funcionais. Ele 

propôs que a eficiência de uma sinapse entre dois neurônios aumenta com a ativação 

simultânea desses neurônios, e quanto maior a correlação entre suas atividades, mais 

forte se torna a conexão entre eles (Haykin, 2009). Essa ideia, conhecida como Lei de 

Hebb, tornou-se fundamental para a compreensão dos mecanismos de aprendizagem 

aplicadas às RNAs, permitindo a adaptação e o aprimoramento contínuo desses 

sistemas (Yadav et al., 2015). 

O primeiro modelo computacionalmente prático, conhecido como Perceptron, 

foi introduzido por Rosenblatt (1958). Ele representa a forma mais simples de uma 

rede neural artificial, composta por um único neurônio artificial capaz de realizar 

tarefas básicas de classificação. O Perceptron combina o modelo teórico de 

McCulloch e Pitts (1943) com as percepções biológicas, resultando na primeira rede 

neural artificial projetada para classificar padrões linearmente separáveis por meio de 

aprendizagem supervisionada. 
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Em 1969, surgiu o livro dos pesquisadores Minsky e Papert criticando o 

perceptron, demonstrando matematicamente que os perceptrons de uma única 

camada tinham limitações fundamentais. Isso resultou em um declínio no interesse 

por redes neurais artificiais (Arbib, 1969). Apenas na década de 80 as redes neurais 

ressurgiram com o modelo de rede perceptron de múltiplas camadas. Esse novo 

modelo utiliza um algoritmo chamado backpropagation (ou retropropagação), com 

aprendizagem supervisionada, que resolveu em grande parte os problemas 

levantados por Minsky e Papert (1969). (Rumelhart et al., 1986) foram responsáveis 

por avanços significativos, demonstrando a eficácia do backpropagation para resolver 

problemas de aprendizagem e popularizando seu uso em redes neurais. 

 

2.6.2 Conceitos Básicos 

As Redes Neurais Artificiais (RNAs) fazem parte do conjunto de técnicas de 

aprendizado de máquina (AM), uma subcategoria da inteligência artificial (IA), uma 

forma de estatística aplicada. As RNA’s são sistemas paralelos distribuídos, 

compostos por neurônios ou unidades de processamento, que computam 

determinadas funções matemáticas (normalmente não-lineares). Tais neurônios de 

processamento podem ser distribuídos em uma ou mais camadas e interligados por 

um grande número de conexões (pesos sinápticos), os quais armazenam o 

conhecimento representado no modelo e servem para ponderar a entrada recebida 

por cada neurônio da rede (Haykin, 2009). 

O cérebro humano possui cerca de 100 bilhões de neurônios biológicos, sua 

célula fundamental. Cada um destes neurônios processa e se comunica com milhares 

de outros continuamente e em paralelo (Braga et al., 2000). Os neurônios possuem 

um papel essencial na determinação do funcionamento e comportamento do corpo 

humano, os quais são divididos em três seções: o corpo da célula; os dendritos, que 

(terminais de entrada) e; pelos axônios (terminais de saída). As entradas são formadas 

através das conexões sinápticas que conectam os dendritos aos axônios de outras 

células nervosas. Os sinais que chegam por estes axônios são pulsos elétricos 

conhecidos como impulsos nervosos e constituem a informação que o neurônio 

processa para produzir como saída um impulso nervoso no seu axônio (Kovacs, 

2002). 

O modelo de neurônio artificial proposto por McCulloch e Pitts (1943), interpreta 

o funcionamento do neurônio biológico como um circuito binário simples que combina 



40 
 

 

várias entradas e apenas um sinal de saída. Sua descrição matemática resultou em 

um modelo com n terminais de entrada representando os dendritos, e apenas uma 

saída simulando o axônio. 

Nesse contexto, o algoritmo de RNAs opera por meio de nós interconectados, 

onde cada nó funciona como um neurônio artificial capaz de processar e transmitir 

sinais de entrada. Esses sinais são multiplicados por pesos sinápticos wkn, que 

refletem a importância relativa de cada entrada xi, e somados a um parâmetro bias bk. 

O resultado dessa soma é processado por uma função de ativação f(a), que determina 

a saída yn. Um neurônio típico é representado pela Figura 8. 

 

Figura 8: Representação esquemática do modelo matemático de um neurônio 
artificial 

Fonte: Ali e Shahbaz (2020) 

 

As diversas arquiteturas de redes neurais podem ser formadas pela 

combinação de neurônios artificiais e são definidas pelo tipo de conexão entre as 

redes. Cada neurônio transfere o seu sinal apenas para os neurônios que se 

encontram em uma das camadas subsequentes. Haykin (2009) relata três tipos de 

camadas: 

- Camada de entrada: onde os padrões são apresentados à rede. 
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- Camadas ocultas (ou intermediárias): trabalham como um 
reconhecedor de características que ficam armazenadas nos pesos 
sinápticos e são responsáveis pela maior parte do processamento e não 
tem ligação direta com o usuário externo. 

- Camada de saída: onde os sinais de saída da rede são apresentados. 

As RNAs também são conhecidas como modelos caixa-preta, que podem 

aproximar a saída ajustando de forma inteligente seus parâmetros internos. Dessa 

forma, a relação entre entrada e saída é parametrizada no projeto estrutural do modelo 

e a RNA pode fazer uma previsão de saída com base em novas entradas não 

conhecidas (Abdulkadir et al., 2013). 

 

2.6.3 Perceptron de Múltiplas Camadas 

A arquitetura clássica, conhecida como Perceptron de Múltiplas Camadas 

(MLP, do inglês Multilayer Perceptron) surgiu como alternativa para modelar relações 

não-lineares complexas, através do seu treinamento supervisionado usando o 

algoritmo de retropropagação de erro. Bem como, a partir do uso de funções de 

ativação não-lineares, como a função sigmoide (Hornik et al., 1989). 

Isto é, os sinais de entrada são propagados camada por camada, até que o 

vetor de saída seja obtido na última camada. O processo de aprendizado termina 

quando o erro desejado é atingido ou quando se atinge um número máximo de épocas 

de aprendizado (Haykin, 2009). 

Uma das principais limitações do MLP é a necessidade de definir 

heuristicamente o número de camadas ocultas e de neurônios em cada camada, o 

que pode resultar em estruturas hiperparametrizadas e computacionalmente custosas 

(Zhang e Morris, 1998). 

 

2.6.4 Redes Neurais Profundas e Convolucionais 

As DNNs (Redes Neurais Profundas) são redes neurais com múltiplas camadas 

ocultas entre a entrada e a saída. Elas são capazes de aprender representações 

hierárquicas dos dados, onde cada camada extrai características cada vez mais 

abstratas e complexas (Grünig et al., 2021). 

As CNNs (Redes Neurais Convolucionais) são especializadas em processar 

dados com estrutura de grade, como imagens. Elas utilizam operações de convolução 

para extrair características locais (como bordas, texturas e padrões) e pooling para 
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reduzir a dimensionalidade dos dados, preservando as informações mais importantes 

(Kattenborn et al., 2021). Entretanto, as CNN’s e DNN’s têm dificuldades com as 

informações temporais nos dados de entrada, que precisem de informações 

sequenciais. 

 

2.6.5 Redes Neurais Recorrentes 

Para uma rede neural ser considerada dinâmica é necessário possuir memória 

(Elman, 1990). Existem duas maneiras de fornecer memória a uma rede neural. A 

primeira forma é utilizar atraso no tempo, tais como as técnicas de Time Delay Neural 

Network (TDNN) e Finite Impulse Response Multilayer Perceptron (FIRMLP). A 

segunda forma, consiste na utilização de redes neurais recorrentes, tais como 

Backpropagation Through Time (ou retropropagação ao longo do tempo) (Braga et al., 

2000). Neste contexto, o estudo adota as RNN’s como ferramenta principal para 

explorar padrões dinâmicos e dependências temporais nos dados, o que as torna 

adequadas para tarefas como previsão. 

Redes recorrentes são definidas como aquelas que possuem conexões de 

realimentação que proporcionam um comportamento dinâmico (Figura 9). 

Diferentemente da arquitetura clássica, como MLP ou redes neurais profundas (DNN), 

as Redes Neurais Recorrentes (RNN) são projetadas para processar dados com 

estrutura temporal ou sequencial (Waqas e Humphries, 2024; Yu et al., 2022), como 

séries temporais, texto, áudio e vídeo (Yu, Antonio e Villalba-Mora, 2022), incluindo a 

modelagem hidrológica (Guzman et al., 2017; Mendonça et al., 2021; Menezes e 

Barreto, 2008; Wang e Chen, 2022). 
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Figura 9: Arquitetura de uma RNN, com múltiplas camadas ocultas (i.e., aprendizado 
profundo) 

Fonte: Waqas e Humphries (2024) 

 

2.6.6 Rede Recorrente NARX 

A abordagem Autorregressiva Não Linear com Entradas Exógenas (NARX) é 

uma arquitetura da rede recorrente, que possuem conexões de realimentação do valor 

resultante do neurônio de saída diretamente para a camada de entrada. Bem como 

encontrado em outras RNAs, as NARXs também são divididas em camadas de 

entrada, oculta e de saída (Wang e Chen, 2022). Assim, a rede recorrente NARX 

(RNN-NARX) é baseada no modelo linear autorregressivo, que é comumente utilizado 

na modelagem de séries temporais (Izady et al., 2013). Além disso, a mesma tem 

melhor habilidade de generalização que outras arquiteturas recorrentes (Lin, Horne e 

Giles, 1998). 

Dois modos de operação na RNN-NARX são importantes e úteis na 

modelagem. Primeiro, no modo Open Loop, os valores observados (target) são 

implementados manualmente na camada de entrada de uma feedforward padrão. 

Segundo, no modo Closed Loop, é possível considerar o valor estimado de saída do 

modelo (output), realimentando diretamente na camada de entrada (Menezes e 

Barreto, 2008), como pode ser observado na Figura 10. 
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Figura 10: Modo de operação NARX Open Loop (a) e; Closed Loop (b) 
Fonte: Mendonça (2022) 

 

Debastiani, Silva e Neto (2016) simularam as vazões diárias em uma sub-bacia 

hidrográfica do rio Canoas, Estado de Santa Catarina, Brasil, elaborando uma rede 

recorrente NARX. A bacia possui 1.980 km², está bem preservada em termos 

ambientais e é considerada importante zona de recarga do Aquífero Guarani. Foram 

utilizadas a precipitação e evapotranspiração de quatro estações meteorológicas, 

duas inseridas na bacia e duas próximas. Após o treinamento em série-paralelo, o 

modelo foi convertido para paralelo, a fim de simular um ano de vazões diárias. Os 

autores exaltaram o potencial da arquitetura, alcançando resultados significativos. 

Mendonça et al. (2021) aplicaram a NARX em uma sub-bacia do rio Guamá, no 

Estado do Pará, Brasil, que apresenta área de contribuição de 5.032 km2. A área de 

estudo é marcada pela agropecuária e presença de comunidades tradicionais. Foram 

utilizadas precipitações diárias de quatro estações pluviométricas em torno da bacia, 

para simular vazões diárias. Os resultados mostraram um coeficiente de determinação 

de 0,99 e baixos erros de simulação. Os autores destacaram, conceitualmente, a 

relação entre o potencial autorregressivo, que é favorecido em bacias planas, e que, 

consequentemente, favorece a infiltração de águas pluviais. 
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2.6.7 Função de Ativação 

A função de ativação f(a), componente de um neurônio artificial, é responsável 

por determinar a saída de cada neurônio com base em sua entrada ponderada a, onde 

a =  ∑ wkixii + bk (wki são os pesos, xi são as entradas e bk é o bias). A função f(a) 

transforma a entrada ponderada em uma saída que será propagada para os neurônios 

subsequentes. A escolha da função de ativação tem um impacto direto na capacidade 

da rede neural de aprender os padrões dos dados de entrada (Abu Yazid et al., 2018). 

A função de ativação degrau, também conhecida como hard-limiter é uma das funções 

de ativação mais simples e antigas utilizadas em redes neurais (Equação 4). Essa 

função produz uma saída binária, onde o neurônio "dispara" (saída 1) se a entrada 

ponderada ultrapassa um determinado limiar, caso contrário, a saída é 0. A função 

degrau foi amplamente utilizada em modelos pioneiros, como o perceptron de 

Rosenblatt, mas sua natureza discreta e não diferenciável limita sua aplicação em 

redes neurais modernas, que dependem de gradientes para o treinamento via 

Backpropagation (Rosenblatt, 1958). 

𝑓(𝑎) = {
1

0
    

𝑠𝑒 𝑎 ≥ 0
𝑠𝑒 𝑎 < 0

         (4) 

Outrossim, a função f(a) pode ser linear ou não linear, e sua definição determina 

como o neurônio responde aos estímulos de entrada. Quando f(a) é uma função linear 

(também conhecida como purelin), a saída do neurônio é diretamente proporcional à 

sua entrada ponderada (Equação 5). Esta função geralmente está associada à 

camada de saída das RNAs, pois podem assumir qualquer valor, tanto positivos 

quanto negativos (Haykin, 2009). 

( )f a a=           (5) 

Quando f(a) não é uma função linear, como é o caso da função de ativação log-

sigmóide (logsig), f(a) mapeia a entrada a para um valor no intervalo (0,1), sendo 

amplamente utilizada em problemas de classificação binária (Ghose et al., 2018), 

conforme a Equação 6. 

1
( )

1 a
f a

e−
=

+
          (6) 

A função tangente hiperbólica (tanh) é similar à sigmoid, mas mapeia a entrada 

para o intervalo de -1 a 1 (Equação 7), o que pode acelerar a convergência em alguns 

casos (Ghose et al., 2018). 
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2.6.8 Treinamento: Algoritmo de Retropropagação do Erro 

O processo de treinamento de RNAs consiste em ajustar os pesos sinápticos 

das RNAs, de tal modo que as entradas xn convirjam para o valor mais próximo à 

saída desejada yn, ou seja, com o menor erro possível. De modo geral, estes 

algoritmos podem ser classificados em treinamentos não supervisionados, 

aprendizado por reforço e supervisionados (Haykin, 2009; Yadav et al., 2015). 

O algoritmo de retropropagação (em inglês, backpropagation) Levenberg-

Marquardt é um algoritmo de aprendizado supervisionado, baseado no processo de 

aprendizado por correção de erros (Farber, 2011). Neste algoritmo, que opera em 

função do erro quadrático médio (MSE), os pesos são modificados através da matriz 

Hessiana aproximada, oriunda da matriz Jacobiana transposta (Sahoo e Jha, 2013), 

conforme expresso na Equação 8. 

( ) ( )
1

1

T
k k k k kk

w w J J I J e
−

+
= − +        (8) 

Onde wk é o peso sináptico, 𝐽𝑘
𝑇𝐽𝑘, representando a matriz Hessiana aproximada, 

ek é o erro quadrático associado a cada iteração, Jk é a matriz Jacobiana, I é a matriz 

identidade e 𝜇 é a constante de aprendizado. 

 

2.7 TRANSFORMAÇÕES ESTATÍSTICAS 

As transformações estatísticas tentam encontrar uma função h que mapeia uma 

variável modelada (Xmod) de modo que sua nova distribuição seja igual à distribuição 

da variável observada (Xo). Segundo Piani et al. (2010), essa transformação pode, 

em geral, ser expressa pela Equação 9. 

𝑋𝑜 = ℎ(𝑋𝑚𝑜𝑑)          (9) 

As transformações estatísticas são uma aplicação da transformação integral de 

probabilidade (Angus, 1994) e se a distribuição da variável de interesse for conhecida, 

a transformação é definida pela Equação 10. 

𝑋𝑜 = 𝐹𝑜
−1(𝐹𝑚𝑜𝑑(𝑋𝑚𝑜𝑑))        (10) 

Onde Fmod é a CDF de Xmod e; Fo
−1 a inversa da CDF (ou a função quantil) de 

Xo. A Figura 11 ilustra transformações estatísticas para saída modelada usando 

precipitação diária observada. À esquerda tem-se o gráfico quantil-quantil da 



47 
 

 

precipitação observada e simulada, bem como o melhor ajuste de uma função 

arbitrária h que é usada para aproximar a transformação. À direita tem-se o CDF 

empírico correspondente de valores observados e simulados, bem como os valores 

simulados transformados. O desafio prático é encontrar uma aproximação adequada 

para h e diferentes abordagens são sugeridas nos subtópicos a seguir. 

 
Figura 11: Esquerda: gráfico quantil-quantil da precipitação observada (Po) e 

projetada (Pm), bem como uma transformação (Po = h(Pm)) que é usada para 
mapear os quantis projetados nos observados. Direita: CDF empírica da precipitação 

observada, projetada e transformada (h(Pm)). 
Fonte: Gudmundsson et al. (2012) 

2.7.1 Transformações derivadas de distribuição 

As distribuições estatísticas podem ser usadas para resolver a Equação 10. 

Esse método estima os quantis da distribuição de probabilidade dos dados, que são 

valores que dividem os dados em intervalos com probabilidades iguais. Por exemplo, 

o quantil 0,9 indica que 90% dos dados estão abaixo dele. A distribuição estatística 

descreve a probabilidade de ocorrência dos valores em um conjunto de dados (ex., 

distribuição exponencial, Gama, Weibull, etc.). Esta abordagem já foi amplamente 

aplicada para ajustar variáveis modeladas (Li et al., 2010; Piani et al., 2010; 

Teutschbein e Seibert, 2012). A maioria desses estudos assume que F é uma mistura 

da distribuição de Bernoulli e Gama, onde a distribuição de Bernoulli é usada para 

modelar a probabilidade de ocorrência e a distribuição Gamma é usada para modelar 

intensidades de variáveis (Cannon, 2012). 

 

2.7.2 Transformações paramétricas 

A relação quantil–quantil (vide Figura 11) pode ser modelada diretamente 

usando transformações paramétricas. Assim, a adequação das seguintes 

transformações paramétricas podem ser expressam da Equação 11 a Equação 15. 
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𝑋̂𝑜 = 𝑏(𝐹𝑚𝑜𝑑)          (11) 

𝑋̂𝑜 = 𝑎 + 𝑏𝐹𝑚𝑜𝑑         (12) 

𝑋̂𝑜 = 𝑏𝐹𝑚𝑜𝑑
𝑐          (13) 

𝑋̂𝑜 = 𝑏(𝐹𝑚𝑜𝑑 − 𝑥)𝑐         (14) 

𝑋̂𝑜 = (𝑎 + 𝑏𝐹𝑚𝑜𝑑) (1 − 𝑒−
𝐹𝑚𝑜𝑑−𝑥

𝜏 )       (15) 

Onde, 𝑋̂𝑜 indica a melhor estimativa de Xo; a, b, c, x e t são parâmetros livres 

que estão sujeitos à calibração. A escala simples (Equação 11) é regularmente usada 

para ajustar a precipitação projetada por modelos do CMIP (Maraun et al., 2010). As 

transformações da Equação 12 para a Equação 15 foram todas usadas por Piani et 

al. (2010) para corrigir a precipitação, para dias úmidos (Xo > 0) minimizando a soma 

residual dos quadrados. Os valores modelados correspondentes à parte seca da CDF 

empírica observada foram definidos como zero em seu estudo. 

 

2.7.3 Transformações não-paramétricas 

2.7.3.1 Suavização de splines (SSPLIN) 

A transformação (Equação 9) também pode ser modelada usando regressão 

não paramétrica mediante splines de suavização cúbica (Hastie et al., 2001). A spline 

de suavização é ajustada apenas à fração da CDF correspondente aos dias 

observados e valores modelados acima de zero. Isso impõe uma restrição ao método, 

como é o caso da precipitação diária, que frequentemente apresentam lacuna (dias 

sem chuva) ou valores zerados na série temporal. O parâmetro de suavização da 

spline é identificado por meio de validação cruzada generalizada. A validação cruzada 

generalizada é uma técnica robusta para selecionar parâmetros de modelos, evitando 

o overfitting. 

 

2.7.3.2 Empirical Quantile Mapping (EQM) 

Uma abordagem comum para resolver a Equação 10 é o método dos quantis, 

que se baseia na utilização de quantis da distribuição de probabilidade para alinhá-las 

à distribuição das observações, proporcionando uma solução flexível para as variáveis 

hidroclimatológicas. Assim, utiliza-se a CDF empírica de valores observados e 

modelados em vez de assumir distribuições paramétricas (Reichle e Koster, 2004; 

Themeßl et al., 2012). Seguindo o procedimento de Boé et al. (2007), as CDF’s 

empíricas são aproximadas usando quantis empíricos. Valores entre os quantis são 
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aproximados usando interpolação linear. A eficácia desse método varia conforme o 

contexto. Usman et al. (2022), por exemplo, aplicaram o EQM para corrigir 

precipitação e temperatura diários em projeções climáticas na Bacia do Rio Chitral, no 

Paquistão. Ao usar esses dados corrigidos em um modelo hidrológico, os resultados 

mostraram que o método não trouxe melhorias significativas nas simulações de vazão, 

tanto para regimes médios quanto extremos. Por outro lado, no estudo de Bum Kim et 

al. (2021), no qual diferentes métodos de correção foram testados em curvas de 

duração de vazão, destaca-se a aplicação do EQM para reduzir os erros sistemáticos 

da simulação e ajustar a variabilidade para valores mais próximos dos observados. 

Isso sugere que as vantagens no uso do EQM, depende das variáveis e objetivos do 

estudo. 

Com base no descrito nesta seção, a escolha de um desses métodos depende 

das características dos dados, escala temporal e do contexto de aplicação da 

transformação estatística (Gudmundsson et al., 2012; Themeßl et al., 2012). 

 

2.8 ANÁLISE DE TENDÊNCIA 

A compreensão da variabilidade e tendências climáticas permite identificar 

padrões temporais em séries históricas de dados, como temperatura, precipitação, 

umidade do solo e vazão de rios. Essa abordagem contribui para a avaliação de 

mudanças no clima e na disponibilidade hídrica (Marengo et al., 2018). O interesse 

pela análise de tendências em variáveis climáticas e hidrológicas intensificou-se a 

partir da segunda metade do século XX, impulsionado por estudos como os do Painel 

Intergovernamental sobre Mudanças Climáticas (IPCC), que evidenciaram o 

aquecimento global e seus impactos (IPCC, 2021). Para identificar padrões temporais, 

métodos estatísticos robustos têm sido amplamente empregados. 

Os testes estatísticos podem ser classificados em paramétricos e não 

paramétricos (Naghettini e Pinto, 2007). Os testes paramétricos se baseiam na 

hipótese de que os dados amostrais foram obtidos a partir de uma população cuja 

distribuição seja conhecida ou previamente especificada. Já os testes não-

paramétricos não necessitam da especificação do modelo distributivo da população, 

pois são formulados com base nas características da amostra. A utilização de testes 

paramétricos e não-paramétricos depende das características dos dados (Xu et al., 

2003). 
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2.8.1 Média Móvel e Mediana Móvel 

A média e a mediana são medidas de tendência central (Walpole et al., 2016). 

Porém, a média móvel é um indicador estatístico que calcula a média dos valores 

dentro de uma janela deslizante ao longo do tempo. Esse método reduz a volatilidade 

dos dados e facilita a identificação de tendências. Matematicamente, a média móvel 

simples (MMS) é dada pela Equação 16, considerando uma amostra com os 

elementos x1+x2+⋯+xn, sendo n o tamanho da amostra. 

𝑀𝑀𝑆𝑡 =
1

𝑛
∑ 𝑥𝑖

𝑡
𝑖=𝑡−𝑛+1         (16) 

Onde MMSt é a média móvel no instante t; xi são os valores individuais da série 

temporal; e n é o tamanho da amostra. Existem também variações como a média 

móvel ponderada, que atribui pesos diferentes para cada dado dentro da janela 

amostral. Diferentemente da média, a mediana móvel é uma alternativa à média 

móvel, sendo especialmente útil quando os dados contêm outliers ou valores extremos 

que podem distorcer a análise. Em vez de calcular a média dos valores dentro da 

janela de observação, a mediana móvel ordena os valores e seleciona o valor central. 

Assim, supondo que dos dados da amostra sejam x1+x2+⋯+xn arranjados em ordem 

crescente de magnitude, e n o tamanho da amostra, a mediana da amostra será 

representada pela Equação 17 (Walpole et al., 2016). 

𝑥̃ = {

𝑥(𝑛+1)

2

𝑠𝑒 𝑛 𝑓𝑜𝑟 í𝑚𝑝𝑎𝑟

1

2
(𝑥𝑛

2
+ 𝑥𝑛

2
+1) 𝑠𝑒 𝑛 𝑓𝑜𝑟 𝑝𝑎𝑟

      (17) 

Tanto a média móvel quanto a mediana móvel são amplamente utilizadas em 

diversas áreas, incluindo finanças, economia, ciência de dados e meteorologia (Costa 

et al., 2023; Silva et al., 2018). 

 

2.8.2 Regressão Linear 

A regressão linear é obtida estimando-se os valores dos coeficientes de 

intercepto (β0) e inclinação (β1) através de alguma técnica de ajustamento (Helsel et 

al., 2020). Segundo Naghettini e Pinto (2007), o método dos mínimos quadrados é um 

dos procedimentos mais adequados para este ajuste. Assim, o modelo de regressão 

linear é dado pela Equação 18, considerando i=1, 2, 3, ..., n. 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1 + 𝜀𝑖         (18) 

Onde yi é a i-ésima observação da variável dependente; xi é a i-ésima 

observação da variável independente; β0 é o coeficiente de intercepto; β1 é o 
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coeficiente de inclinação; εi é o erro aleatório ou residual para a i-ésima observação; 

n é o tamanho da amostra. O erro residual depende da variabilidade natural do 

sistema, possui média igual a zero e variância (σ²) constante, portanto, εi é 

independente de xi. 

 

2.8.3 Spearman Rho 

O teste Spearman Rho (SR) é um teste não-paramétrico, semelhante ao Mann-

Kendall, com potência uniforme para tendências lineares e não lineares. Esse método 

é comumente utilizado para verificar tendências em séries temporais (Gauthier, 2001). 

Neste teste, a hipótese nula, de ausência de tendência (H0), ocorre quando todos os 

dados da série temporal são independentes e identicamente distribuídos, enquanto a 

hipótese alternativa, com tendência (H1), existe quando há um aumento ou a 

diminuição tendências (Yue et al., 2002). A estatística D e o teste ZSR são expressos 

pelas Equações 19 e 20. 

𝐷 = 1 −
6 ∑ (𝑅𝑖−𝑖)2𝑛

𝑖=1

𝑛(𝑛2−𝑛)
         (19) 

𝑍𝑆𝑅 = 𝐷√
𝑛−2

1−𝐷²
          (20) 

Onde Ri é o ranking da precipitação medida no intervalo i e n é o tamanho da 

amostra. Os valores positivos de ZSR indicam tendências crescentes, enquanto ZSR 

negativo indica tendências negativas nas séries temporais. Quando │ZRS│> t(n-2, 1-α/2), 

a hipótese nula é rejeitada e uma tendência significativa existe na série temporal. O 

parâmetro t(n-2, 1-α/2) é o valor crítico de t a partir da tabela t-student, para o nível 

significativo de 5%. 

 

2.8.4 Mann-Kendall 

O teste de tendência de Man-Kendall (Mann, 1945; Kendall, 1975) é um dos 

mais utilizados na avaliação de tendências de séries históricas naturais que se 

distanciam da distribuição normal, como vazões, temperatura e precipitação (Hamed, 

2009). A hipótese nula (H0) assume que a série é constante, sem variações 

significativas ao longo do tempo, mantendo a distribuição de probabilidade inalterada. 

Já a hipótese alternativa (H1) sugere a presença de uma tendência monotônica 

(crescente ou decrescente), indicando mudanças significativas na série temporal (Xu 

et al., 2003). 
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Na aplicação do teste, para uma dada série temporal Xt, composta por n 

termos, avalia-se a presença de tendências comparando a ordem relativa dos valores 

ao longo do tempo. Em vez de analisar os valores absolutos, o teste se baseia na 

contagem de concordâncias e discordâncias entre pares de observações. Isso 

significa que, para cada par de pontos na série temporal, verifica-se aumento ou 

diminuição relativa entre eles. A partir dessa análise, calcula-se o coeficiente de 

Kendall Tau (S), que quantifica a força e a direção da tendência. Além disso, o teste 

fornece um p-valor, que indica a significância estatística da tendência observada. 

O valor de Kendall Tau, também conhecido como coeficiente de concordância 

de Kendall, é uma medida estatística de correlação usada para avaliar a associação 

entre duas variáveis classificadas. Ele quantifica a concordância ou discordância entre 

as classificações das duas variáveis, independentemente dos valores exatos das 

classificações. O coeficiente de Kendall Tau varia de -1 a +1, sendo: 

a) Se Tau for próximo de +1, indica uma forte concordância entre as 

classificações das duas variáveis; 

b) Se Tau for próximo de -1, indica uma forte discordância entre as 

classificações das duas variáveis; 

c) Se Tau for próximo de 0, indica uma ausência de associação linear 

entre as duas variáveis classificadas. 

 

O p-valor de Kendall é uma medida estatística usada em conjunto com o 

coeficiente de concordância de Kendall (Tau) para determinar se a relação observada 

entre duas variáveis classificadas é estatisticamente significativa. O p-valor indica a 

probabilidade de observar uma associação tão forte (ou mais forte) entre as variáveis, 

assumindo que não haja associação real na população. Se o p-valor for menor que 

um determinado nível de significância (geralmente 0,05), então há evidências 

estatísticas para rejeitar a hipótese nula de que não há associação entre as variáveis. 

Ou seja, a associação observada entre as variáveis é improvável de ocorrer apenas 

por acaso. Por outro lado, se o p-valor for maior que o nível de significância escolhido, 

então não há evidências suficientes para rejeitar a hipótese nula e se conclui que não 

há uma associação estatisticamente significativa entre as variáveis. Em resumo, o p-

valor de Kendall ajuda a determinar se a relação entre as variáveis classificadas é 

estatisticamente significativa ou se ocorreu por acaso. 
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Além disso, embora o teste de Mann-Kendall permita detectar tendências 

estatisticamente significativas, ele não estima a magnitude dessas tendências. Por 

isso, sua aplicação é frequentemente complementada pelo Estimador de Declive de 

Sen. Esse estimador quantifica a magnitude da tendência em uma série temporal, 

determinando a inclinação verdadeira caso uma tendência linear esteja presente (Sen, 

1968). O teste Mann-Kendall é preferido ao teste de Spearman para analisar taxas de 

vazão por ser robusto com dados não paramétricos e por detectar tendências 

monotônicas sem exigir uma distribuição específica. Enquanto o Spearman foca na 

correlação de classificação, o Mann-Kendall lida melhor com correlação serial e 

variações sutis nas taxas de vazão, tornando-o mais adequado para esse tipo de 

análise (Ashraf et al., 2021; Baran-Gurgul, 2017; Hamed, 2016). 

 

3 MATERIAL E MÉTODOS 

3.1 ÁREA DE ESTUDO 

3.1.1 Bacia hidrográfica do rio Capim-Guamá 

A bacia hidrográfica do Capim-Guamá, formada pela confluência dos rios 

Capim e Guamá, está localizada no nordeste do estado do Pará, abrangendo uma 

área de drenagem de 80.317,63 km². A bacia fica localizada no Nordeste Paraense, 

que é a mais antiga fronteira de colonização do estado do Pará. Hoje, a maior parte 

de sua vegetação original já foi devastada ou fortemente alterada. A antropização foi 

acelerada a partir do desmatamento para a construção da rodovia Belém-Brasília, a 

qual foi preconizada no Programa de Integração Nacional (Cordeiro et al., 2017). 

Geograficamente, a bacia situa-se entre as coordenadas 1°5’33” N e 5°45’36” S de 

latitude e 49°39’11” O e 46°46’6” L de longitude. É uma das principais bacias 

hidrográficas do estado, destacando-se por abranger a cidade de Belém, capital do 

Pará e sede da COP30, Conferência das Nações Unidas sobre Mudanças Climáticas 

de 2025. 

 

3.1.2 Sub-bacia hidrográfica do rio Guamá 

A sub-bacia hidrográfica do rio Guamá (Figura 12), foco deste estudo, 

corresponde à área de drenagem delimitada pela seção transversal da estação 

fluviométrica Bom jardim, representada por Q1. Na Figura 12, também, estão 

localizadas as estações pluviométricas, denominadas P1, P2, P3 e P4. A sub-bacia 

está localizada entre as latitudes 1°25’44” N e 2°35’43” S e as longitudes 47°28’57” O 



54 
 

 

e 46°46’6”, abrangendo uma área total de 5.001,29 km². A sub-bacia abrange 4 

municípios, sendo estes: Capitão Poço, Garrafão do Norte, Ourém e Santa Luzia do 

Pará. 

 

 

Figura 12: Localização da sub-bacia hidrográfica do rio Guamá 
 

O clima da área de estudo é o Am, conforme a classificação climática de 

Köppen-Geiger, característico de um clima tropical, com temperaturas acima de 18°C, 

altos índices de precipitação e presença de uma estiagem de pequena duração 

(Alvares et al., 2013). A classe de uso do solo predominante na bacia hidrográfica é a 

Pastagem, ocupando 62,13% da área total, evidenciando sua importância no contexto 

regional. Além disso, existe a Formação Florestal, com 34,54%, e a Floresta Alagável, 

com 1,54%, caracterizando a vegetação natural da região. Em menor escala, estão 

as áreas destinadas a plantações de dendê, soja e outras lavouras temporárias, que 

somam 0,72%, e a área urbanizada, correspondendo a 0,27% da área da bacia 

(Mapbiomas Brasil, 2024). A Figura 13 apresenta tais classes da cobertura e uso da 

terra para a área de estudo. 
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Figura 13: Mapa do Uso e Cobertura da terra da sub-bacia hidrográfica do rio 
Guamá 

 

3.2 EXTRAÇÃO DE DADOS 

No presente estudo, a análise dos dados foi conduzida considerando dois 

períodos de análise distintos: um período de referência e um período futuro. O período 

de referência abrange os anos de 2009 a 2021, sendo utilizado como base para 

estabelecer condições e tendências históricas. E o período futuro estende-se de 2022 

a 2100. Na Tabela 2 são apresentados dados sobre identificação, coordenadas 

geográficas, estações hidrometeorológicas e siglas utilizadas ao longo do texto. Os 

dados de chuva e vazão observados e registrados pelas estações estão disponíveis 

na plataforma HYDROWEB (https://www.snirh.gov.br/hidroweb/serieshistoricas) da 

ANA. 

https://www.snirh.gov.br/hidroweb/serieshistoricas
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Tabela 2: Identificação, coordenadas geográficas e estações hidrometeorológicas 
utilizadas no estudo 

Código  Tipo Nome da estação Longitude Latitude Sigla 

147016 Pluviométrica Ourém 47°07’02” O 01°33’06” S P1 

147011 Pluviométrica Santa Luzia 46°54’22” O 01°47’56” S P2 

146012 Pluviométrica Japim 46°41”48” O 01°47’56” S P3 

247004 Pluviométrica Fazenda São Raimundo 47°30’58” O 02°25’34” S P4 

31520000 Fluviométrica Bom Jardim 47°03’56” O 01°32’26” S Q1 

Fonte: ANA (2024) 

 

Projeções climáticas do GCM GFDL-ESM4, parte do conjunto NASA Earth 

Exchange Global Daily Downscaled Projections (NEX-GDDP) do CMIP6, com 

resolução espacial de 0,25º x 0,25º foram utilizadas para alimentar a modelagem com 

chuvas futuras. As precipitações projetadas foram utilizadas para os dois períodos de 

análise (referência e futuro). O período que abrange projeções climáticas históricas 

do CMIP6 corresponde aos anos de 1850 a 2014. Entretanto, foram baixadas as 

projeções climáticas a partir de 2009, em correspondência com a disponibilidade de 

dados observados da sub-bacia. O conjunto de dados de referência é necessário para 

se observar o “presente” ou “passado recente”. 

As precipitações projetadas, a partir de 2022 até 2100, foram obtidas com base 

em dois cenários de desenvolvimento socioeconômico compartilhados: SSP2-4.5, que 

representa um cenário intermediário com políticas moderadas de mitigação e 

transição tecnológica; e o SSP5-8.5, que reflete um cenário de crescimento 

econômico intenso impulsionado por combustíveis fósseis e altas emissões de gases 

de efeito estufa (Leimbach et al., 2017; O’Neill et al., 2016). O GCM selecionado para 

obtenção dos dados de chuva futura foi o GFDL-ESM4. De acordo com o 

ranqueamento realizado por Mendonça et al. (2024), os GCMs que melhor simularam 

as variações sazonais de precipitação no bioma amazônico foram, em ordem 

decrescente de desempenho: KIOST-ESM, FGOALS-g3, CESM2-WACCM, BCC-

CSM2-MR, NESM3 e GFDL-ESM4, este último ocupando a sétima posição. No 

entanto, ao realizar uma análise de correlação em escala de pixel com base nos dados 

históricos, o GFDL-ESM4 destacou-se como o modelo mais adequado para a região 

de estudo, justificando sua seleção. 

O GFDL-ESM4 vem sendo desenvolvido pelo Geophysical Fluid Dynamics 

Laboratory (GFDL), criados nos Estados Unidos com o apoio da National Oceanic and 
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Atmospheric Administration (NOAA). Assim, as precipitações projetadas de referência 

e futura foram associadas diretamente às coordenadas geográficas das estações 

pluviométricas P1, P2, P3 e P4. 

 

3.3 MÉTRICAS DE DESEMPENHO 

Na Tabela 3 são apresentadas as métricas de desempenho utilizadas no 

estudo. As métricas incluem o o Erro Médio Quadrático (MSE), o Coeficiente de 

Determinação (R²), o Valor de Ajuste (FIT) e o Índice de Eficiência Kling-Gupta (KGE) 

e suas componentes. 

Tabela 3: Métricas de desempenho 

Métricas Fórmulas 
Valor 
ótimo 

Referência 

MSE ( )
2n

i ii=1

1
O - E

n
  0 

Chai e Draxler 
(2014) 

R² 
( )

( )

n 2

i ii=1

2n

ii=1

S - O
1-

O - O




 1 

Steel e Torrie 
(1981) 

FIT 
( )

n 2

i ii=1

max min

O - E

n1-
O - O



 
1 

Nouri e Homaee 
(2018) 

KGE ( ) ( ) ( )
2 2 2

1- 1- 1- 1-r  + +  

1 Gupta et al. (2009) 

KGE𝑟 ( )
2

1 1 r− −  

KGEγ ( )
2

1 1 − −  

KGEβ ( )
2

1 1 − −  

 

Na Tabela 3, Oi e Ei são valores observados e estimados, respectivamente; 

Omax e Omin são as observações máximas e mínimas, respectivamente; 𝑂̅ é a média 

dos valores observados; n é tamanho da amostra; o parâmetro r representa a 
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correlação de Pearson; γ é a razão entre o coeficiente de variação dos valores 

estimados (CVs = σE/µE) e o coeficiente de variação dos valores observados (CVo = 

σO/µO) e; β é a razão entre a média dos valores estimados (Ei) e a média dos valores 

observados (Oi). Sobre a melhor faixa de desempenho do KGE, para determinar se 

um modelo é “bom” ou “ruim”, foram adotados níveis de desempenho determinados 

por Mai et al. (2022) (Tabela 4). A classificação da precisão baseada no FIT pode ser 

resumida da seguinte forma: valores FIT de 0,90 ou superiores indicam excelente 

precisão, valores variando de 0,70 a 0,90 significam precisão confiável e valores 

inferiores a 0,60 refletem baixa precisão (Nouri e Veysi, 2024). 

Tabela 4: Níveis de desempenho estratificados para qualificar um modelo 

Parâmetro Ruim Médio Bom Excelente 

KGE [-∞ a 0,48[ [0,48 a 0,65[ [0,65 a 0,83[ [0,83 a 1[ 

KGE𝑟 [-∞ a 0,70[ [0,70 a 0,80[ [0,80 a 0,90[ [0,90 a 1[ 

KGEγ [-∞ a 0,70[ [0,70 a 0,80[ [0,80 a 0,90[ [0,90 a 1[ 

KGEβ [-∞ a 0,70[ [0,70 a 0,80[ [0,80 a 0,90[ [0,90 a 1[ 

Fonte: Mai et al. (2022) 

 

3.4 CORRELAÇÃO CRUZADA E AUTOCORRELAÇÃO PARCIAL 

Correlação cruzada e autocorrelação parcial são técnicas utilizadas para se 

obter um modelo parcimonioso, evitando-se aumentar o número de defasagens na 

entrada da rede neural sem ganho significativo de desempenho, definindo-se de forma 

mais coerente os vetores de entrada no modelo RNN-NARX. A correlação cruzada 

(Bayer et al., 2012) é utilizada para avaliar a relação linear entre precipitação (P1, P2, 

P3, P4) e vazão (Q1), considerando defasagens temporais nas séries observadas 

(Equação 21 e Equação 22). 

( )( , )

1

1
cov ( )( )

t k

n

y x t k

t k

y y x x
n− −

= +

 
= − − 

 
       (21) 

( )( , )

( )

cov

( )

t ky x

x t k yr
y y

−

− =
−

         (22) 

Onde cov é a covariância amostral, y e x são as variáveis abordadas, k são os 

valores defasados do instante t, 𝑦̅ e 𝑥̅ são médias amostrais, e n é o número de 

observações. A autocorrelação parcial foi usada para analisar a influência de valores 

passados da vazão sobre os atuais, isolando efeitos de defasagens distintas, com um 

intervalo de confiança de 99% (Mendonça et al., 2021). Esse índice elimina 
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interferências entre defasagens e representa a dependência temporal real (Equação 

23 e Equação 24). 

( )( ) ( )
2

1 1

n n

k t t k t

t k t

y y y y y y −

= + =

   
= − − −   
   
        (23) 

( ) ( )
1 1

1 1

1 1

1
k k

kk k k j k j k j k

j j

     
− −

− − −

= =

   
= − − − −   
   

       (24) 

Onde ρk é o coeficiente de autocorrelação, y é a variável autocorrelacionada 

nos instantes t e t-k, ȳ é a média de y, 𝜙kk é o coeficiente de autocorrelação parcial e 

𝜙k-1j são os coeficientes de autocorrelação parcial filtrados das defasagens anteriores. 

 

3.5 MODELO RNN-NARX 

Para a modelagem das séries temporais de vazão neste estudo, sob os 

cenários climáticos SSP2-4.5 e SSP5-8.5, foi utilizado uma rede neural recorrente, 

com arquitetura Autorregressiva Não Linear com Entradas Exógenas (RNN-NARX), já 

exploradas por outros autores (Fabio et al., 2022; Guzman et al., 2017). As redes 

NARX’s possuem conexões recorrentes que permitem que a rede tenha uma memória 

interna (feedback), necessária para capturar dependências temporais e sequenciais 

nos dados (Sit et al., 2020), conforme expresso pela Equação 26. 

1

z

k kn n k

n

y f w x b
=

 
= + 

 
         (26) 

Onde cada xn é ponderado por um peso sináptico wkn, que é somado ao 

parâmetro bias bk, que modula o sinal de saída através de uma função de ativação f, 

ou seja, as informações fluem através de sucessivas conexões ponderadas, até gerar 

um sinal de resposta (yk). A seguir são descritas as etapas de treinamento e validação 

cruzada. As seções 3.5.1, 3.5.2 e 3.5.3 apresentam a divisão de dados e as etapas 

de desenvolvimento do modelo, o qual foi desenvolvido em linguagem de 

programação computacional. 

 

3.5.1 Divisão do conjunto de dados 

No processo de parametrização, isto é, durante o treinamento os vetores de 

entrada são um conjunto de dados observados, correspondentes a vazão e 

precipitação extraídas das estações, Figura 14 e Figura 15, respectivamente. Os 

dados foram divididos em dois subconjuntos: destacando-se treinamento (2009-2019) 
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e validação cruzada (2020-2021), que utiliza um subconjunto de dados independente 

do utilizado durante o treinamento. 

 

Figura 14: Divisão das vazões diárias observadas em períodos destinados ao 
treinamento e validação cruzada do modelo RNN-NARX (a) e mensais (b) na 

estação fluviométrica Bom Jardim. 
 

 

Figura 15: Divisão das precipitações observadas nas estações pluviométricas (P1 
(a), P2 (b), P3 (c), e P4 (d)) em períodos destinados ao treinamento e validação 

cruzada do modelo RNN-NARX. 
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Ao utilizar redes de algoritmos de retropropagação, dependendo da função de 

ativação dos neurônios, é necessário realizar a normalização dos dados de entrada. 

Sola e Sevilla (1997) afirmaram que a normalização dos dados de entrada é crucial 

para obter bons resultados, bem como agilizar substancialmente os cálculos. Dessa 

forma, os dados foram normalizados no intervalo de -1 a 1, conforme a Equação 25, 

para se adequar à faixa de funcionamento da função de ativação. Este intervalo 

corresponde à faixa de funcionamento da função de ativação tangente hiperbólica. 

𝑥𝑛 = 𝑖𝑚𝑖𝑛 +
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
(𝑖𝑚𝑎𝑥 − 𝑖𝑚𝑖𝑛)      (25) 

Em que x é a variável, que se deseja normalizar, xn é a variável normalizada, 

xmin e xmax são os valores mínimos e máximos encontrados nos dados, e imin e imax são, 

respectivamente, os limites inferior e superior do intervalo, que se deseja normalizar. 

Ao final das simulações, as vazões diárias foram desnormalizadas, retornando aos 

seus valores originais. 

 

3.5.2 Treinamento 

No treinamento, o modelo foi parametrizado no modo open loop. O conjunto de 

dados observados foi utilizado como entrada, permitindo ajuste de pesos e biases a 

fim de aprender a relação não linear entre a precipitação (entrada) e a vazão (saída). 

Essa fase tem como objetivo otimizar os parâmetros internos da rede para minimizar 

o erro de previsão. O modelo foi configurado da seguinte forma: 

- Camada de entrada: os vetores de entrada correspondem às precipitações e 

vazões, nos quais foram testadas várias combinações de valores defasados; 

- Camada Oculta: utilizou-se uma única camada oculta, suficiente para 

aproximar funções não lineares (Menezes e Barreto, 2008). O número de 

neurônios ocultos (entre 2 e 20) foi definido pelo método das aproximações 

sucessivas, tendo como função objetivo o MSE (Tabela 3). A quantidade de 

neurônios na camada oculta é crucial no processo de treinamento. Uma 

quantidade pequena de neurônios pode ser insuficiente para aprender os 

padrões existentes (underfitting). Por outro lado, uma maior quantidade de 

neurônios pode conduzir à perda de capacidade de generalização (overfitting); 

- A função de ativação aplicada na camada oculta da RNN-NARX foi a tangente 

hiperbólica (tanh). Visto que os estudos de Rezaeian Zadeh et al. (2010) e 

Yonaba et al. (2010) mostraram que a função tangente hiperbólica teve um 
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desempenho melhor do que a log-sigmoide na previsão de vazões diárias. Foi 

utilizada apenas uma camada oculta, pois é suficiente para aproximar qualquer 

função não linear (Hornik et al.,1989); e 

- O algoritmo de otimização utilizado foi o Levenberg-Marquardt (trainlm), 

realizado ao longo de até 1000 épocas para minimizar o MSE. Este algoritmo 

é uma adaptação do método Gauss-Newton, abordando um treinamento de 

segunda ordem com a aproximação de uma matriz Hessiana (Sahoo e Jha, 

2013). A partir desse algoritmo de treinamento, expresso pela Equação 8 

(Seção 2.6.8), o ajuste dos parâmetros dos pesos sinápticos (wk) e bias (bk) foi 

elaborado. 

Cada combinação possível é treinada várias vezes, e a configuração com o menor 

erro é a escolhida para dar continuidade a validação cruzada. 

 

3.5.3 Validação cruzada por parada antecipada 

A validação cruzada é uma extensão do treinamento, pelo qual se acompanhou 

a evolução do aprendizado sobre um conjunto de dados distinto. Nesta etapa, o 

método de parada antecipada foi utilizado para evitar overtraining. Os critérios de 

finalização do treinamento são mostrados na Tabela 5. A parada antecipada consiste 

na avaliação iterativa de um subconjunto de dados, de modo que quando alcançado 

algum critério específico, tal como o menor erro pré-definido, a etapa seja interrompida 

(Mendonça et al., 2023). 

 

Tabela 5: Condições de parada antecipada por validação cruzada 

Parâmetro Valor 

Máximo número de iterações 1000 

Desempenho desejado (erro quadrático médio máximo) 0,005 

N° máx. de aumento de desempenho na validação 200 

Tempo máximo de treinamento (segundos) 3000 

 

Inicialmente, o modelo foi configurado em modo Open Loop durante o período 

de referência. Posteriormente, ainda nesse mesmo período, foi convertido para o 

modo Closed Loop para avaliar sua capacidade de realizar previsões autônomas e 

verificar seu desempenho em estimativas de longo prazo. Os vetores de entrada 
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utilizados foram as precipitações projetadas pelo GCM GFDL-ESM4, que abrangem 

dados do período historical e cenários do período de 2009 a 2021, uma vez que os 

cenários climáticos do CMIP6 começam apenas em 2015. Após a avaliação do 

desempenho do modelo e a obtenção das equações de correção (Seção 3.6), as 

vazões de longo prazo (2022 a 2100) foram simuladas, considerando os dois cenários 

climáticos do CMIP6: SSP2-4.5 e SSP5-8.5. 

 

3.6 CORREÇÃO DE VIÉS DAS VAZÕES SIMULADAS 

As vazões futuras foram corrigidas pelo método Empirical Quantile Mapping 

(EQM), um dos métodos mais utilizados e efetivos para a correção de viés de varáveis 

que foram simuladas, tendo como entradas variáveis forçantes oriundas de GCMs 

(Holthuijzen et al., 2022). Este método se fundamenta nas transformações estatísticas 

e probabilísticas (Angus, 1994), ajustando as distribuições simuladas às observadas, 

minimizando distorções (Equação 27). 

𝑄𝑐𝑜𝑟𝑟,𝑑 = 𝐶𝐷𝐹𝑜𝑏𝑠
−1 (𝐶𝐷𝐹𝑠𝑖𝑚

−1 (𝑄𝑠𝑖𝑚,𝑑))       (27) 

Onde CDFsim
-1 é a função a função de distribuição acumulada aplicada à 

variável simulada em valores diários (Qsim,d), transformando esses valores para o 

espaço probabilístico padrão (intervalo [0,1]). Já a CDFobs
-1 é a função que transforma 

o espaço probabilístico de volta para o domínio das vazões diárias corrigidas (Qcorr,d). 

Dessa forma, as vazões simuladas pelo modelo RNN-NARX para o período de 

referência (2009 a 2021) foram utilizadas como controle, enquanto as vazões 

simuladas para o período futuro (2022 a 2100) foram submetidas ao processo de 

correção. 

 

3.7 TESTE MANN-KENDALL 

O teste MK é um método de teste estatístico não paramétrico comumente 

utilizado para analisar a tendência de uma série temporal. O método não exige que os 

dados obedeçam a uma distribuição específica e a faixa de teste é ampla. É adequado 

para testes de tendências de dados hidrometeorológicos aleatórios e não 

normalmente distribuídos (Yue et al., 2002). O teste examina a significância da 

estatística MK padronizada, i.e., Zα/2 (Equação 31). O valor estatístico S para séries 

temporais é definido pela Equação 28. 

( )
1

1 1
sgn

n n

j ii j i
S x x

−

= = +
= −          (28) 
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Onde sgn é função de sinal; n é o tamanho da amostra, xi e xj são variáveis 

aleatórias com xj seguindo xi no tempo. O valor positivo da estatística S indica uma 

tendência ascendente da série temporal; caso contrário, um valor negativo significa 

uma tendência descendente. Quando n é maior que 8, pode-se considerar que S 

obedece à suposição de distribuição normal padrão, e sua expectativa E(S) e 

variância Var(S) podem ser expressas pela Equação 29 e Equação 30, 

respectivamente. 

( ) 0E S =           (29) 

( )( )
1

( ) 1 2 5
18

Var S n n n= − +          (30) 

( )

( )

/2

1 / ( ) 0

0 0

1 / ( ) 0

S Var S S

Z S

S Var S S



 − 


= =


+ 

      (31) 

Para uma sequência aleatória, o valor crítico do teste Zα/2 no determinado nível 

de significância pode ser encontrado na tabela de distribuição normal, sendo α o limite 

para significância estatística. Um valor de 1,96 < |Zα/2| ≤ 2,58 indica que a amostra tem 

uma tendência de mudança significativa no nível de significância α = 0,05; quando 

|Zα/2| > 2,58, indica que a série de dados tem uma tendência de mudança significativa 

no nível de significância de α = 0,01. Em que o p-valor de 0,05 ou inferior é 

considerado como indicativo de uma mudança estatisticamente significativa, enquanto 

p-valor de 0,01 ou inferior indica uma mudança muito significativa (Kendall, 1975). 

O MK foi utilizado em conjunto com o estimador Sen’s Slope e o coeficiente de 

variação (CV) para avaliar a tendência das vazões futuras médias de longo período 

da sub-bacia hidrográfica do rio Guamá. A vazão média de longo período permite 

caracterizar a maior vazão possível de ser regularizada em uma bacia permitindo a 

avaliação dos limites superiores (abstraindo as perdas) da disponibilidade de água de 

um manancial. A vazão média de longo período é definida como a média das vazões 

médias anuais para toda a série de dados, sendo específica quando dividida pela área 

da bacia hidrográfica de interesse (Alexandre e Martins, 2005). 

 

3.8 ESTIMADOR SEN’S SLOPE 

Além de identificar se existe uma tendência, a magnitude de uma tendência 

também deve ser estimada. O estimador Sen's Slope é um método não paramétrico 



65 
 

 

amplamente utilizado para identificar e quantificar tendências em séries temporais 

(Sen, 1968). Esse método é considerado robusto por não ser sensível a outliers e por 

não exigir normalidade ou linearidade. Sendo frequentemente empregado em análises 

ambientais, hidrológicas e climáticas(Yue et al., 2002). O estimador Sen’s Slope (β) é 

a mediana sobre todas as combinações possíveis de pares para todo o conjunto de 

dados (Sij). Um valor positivo de β indica uma 'tendência ascendente', enquanto um 

valor negativo de β indica uma 'tendência descendente'(Hirsch et al., 1991; Xu et al., 

2007). A inclinação, i.e., a taxa linear de mudança, é calculada via Equação 32. 

𝑆ij =
xj−xi

j−i
           (32) 

Onde Sij é a inclinação, x denota a variável e i, j são índices. O valor final do 

Sen's Slope (β) corresponde à mediana de todas as inclinações (Sij), conforme dado 

pela Equação 33. 

β = 𝑚𝑒𝑑𝑖𝑎𝑛𝑎(𝑆ij)         (33) 

 

3.9 COEFICIENTE DE VARIÂNCIA 

O coeficiente de variação (CV) será aplicado a uma série temporal de vazões 

diárias como uma medida de variabilidade relativa. Ele é calculado como a razão entre 

o desvio padrão (σ) e a média (x̄) das vazões diárias, conforme a Equação 34. 

CV =
σ

𝑥̅
100           (34) 

Neste estudo, foram realizadas análises de tendências de vazões diárias, para 

identificar possíveis mudanças significativas no regime hidrológico, como aumentos 

ou reduções nas vazões, que podem estar associadas ou não à influência das 

mudanças climáticas. A Figura 16 mostra o fluxograma da metodologia desenvolvida. 
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Figura 16: Fluxograma da metodologia apresentada para estimar as vazões com um 
modelo RNN-NARX sob a influência das mudanças climáticas. 
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4 RESULTADOS E DISCUSSÃO 

4.1 CORRELAÇÃO CRUZADA E AUTOCORRELAÇÃO PARCIAL 

A Figura 17 mostra os coeficientes de correlação cruzada entre a vazão 

observada (Q1) e as precipitações (P1, P2, P3 e P4). Ademais, a Figura 17 mostra o 

coeficiente de autocorrelação parcial para a vazão observada com defasagens de até 

10 dias e intervalo de confiança de 99% indicado pelas linhas tracejadas em azul. 

 

 

Figura 17: Coeficientes de correlação cruzada entre a vazão (Q1) e as precipitações 
(P1-a, P2-b, P3-c e P4-d) e coeficientes de autocorrelação parcial da vazão (e), com 

intervalo de confiança de 99% para o período de referência (2009-2021) 
 

Nas Figuras 17-a, 17-b, 17-c e 17-d, são apresentados os coeficientes de 

correlação cruzada entre a vazão (Q1) e as precipitações (P1, P2, P3 e P4). Os 

coeficientes positivos observados nas defasagens de até 10 dias representam a 

resposta não imediata da vazão em relação às precipitações. Nota-se um padrão 

crescente nos valores à medida que os dias passam, o que sugere uma influência 

temporal e espacial das precipitações sobre a vazão. Esse efeito é mais pronunciado 

na estação mais distante ao exutório (P4), pois a precipitação, medida nessa estação, 

demora mais tempo (dias) para influenciar as vazões, refletindo em uma resposta 

hidrológica mais lenta. Isso é devido à não linearidade do fenômeno chuva-vazão. 

Já na Figura 17-e, a autocorrelação parcial das vazões mostra uma 

dependência temporal positiva no primeiro dia de defasagem (próximo a 1) e negativa 

no segundo dia (próximo à -0,2). Esse comportamento reflete a persistência das 
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condições hidrológicas e a inércia do sistema, onde os valores iniciais de vazão 

influenciam diretamente nos valores dos dias subsequentes. Mendonça et al. (2021), 

ao analisar uma série temporal de dados até 2019, identificaram valores de 

autocorrelação parcial semelhantes na mesma sub-bacia. Entretanto, observa-se 

divergências em relação aos valores de correlação cruzada encontrados no estudo 

dos autores. Isso pode ser explicado pela inclusão de dados dos anos de 2020 e 2021, 

neste estudo, que refletiram na resposta hidrológica. 

 

4.2 PERÍODO DE REFERÊNCIA 

4.2.1 Open Loop – treinamento e validação cruzada 

No processo de parametrização do modelo, as análises de defasagem temporal 

das variáveis (Figura 17) possibilitaram a definição dos vetores de entrada do modelo 

e seus atrasos, incluindo a retroalimentação das vazões (Tabela 6). 

 

Tabela 6: Vetores de entrada e os atrasos temporais da RNN-NARX treinada 

Vetores de 
Entrada 

Atrasos de Entrada Retroalimentação Saída 

P1(t), P2(t), P3(t), 
P4(t) 

(t-1), (t-2), (t-3), (t-4), 
(t-5), (t-6)  

Q(t-1), Q(t-2), Q(t-3) Q(t) 

 

Na Tabela 6 observa-se a configuração dos vetores de entrada e 

retroalimentação definidos para a RNN-NARX, que apresentou as melhores métricas 

de desempenho entre as vazões simuladas (saída do modelo) e as vazões 

observadas (Tabela 7). Os vetores de entrada incluem as séries de precipitação 

projetadas P1, P2, P3 e P4 com atrasos de 1 a 6 passos de tempo (t-1, t-2, t-3, t-4, t-

5, t-6). Adicionalmente, a retroalimentação da rede foi estruturada utilizando valores 

passados da série de vazão Q, com atrasos de 1 a 3 passos de tempo (Q(t-1), Q(t-2), 

Q(t-3)). 

A seguir, a Figura 18 ilustra a comparação entre a vazão simulada pelo modelo 

e a vazão observada, para o período de referência (2009 a 2021), a partir da obtenção 

dos parâmetros do modelo. 
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Figura 18: Dispersão entre os dados observados e simulados nas etapas de 
treinamento e validação para o período de referência (2009-2021), resultado da 

parametrização 
 

A Figura 18, demonstra a dispersão entre os dados observados e simulados 

durante as etapas de treinamento e validação para o período de 2009 a 2021. 

Analisando-se a proximidade dos pontos em relação à linha de referência indica que 

o modelo conseguiu reproduzir com boa precisão os dados observados, sugerindo 

uma parametrização adequada. Essa análise é necessária para validar a 

confiabilidade do modelo e garantir que a parametrização do modelo tenha sido eficaz. 

A seguir, a Tabela 7 mostra a avaliação de desempenho das vazões simuladas 

pela RNN-NARX, que foram obtidas a partir da configuração apresentada 

anteriormente (Tabela 6). 

 

Tabela 7: Métricas de desempenho da RNN-NARX no treinamento e validação 
cruzada 

Etapa FIT R² KGE KGEr KGEγ KGEβ 

Treinamento 0,98 0,99 0,99 0,99 0,99 1,0 

Validação cruzada 1,0 0,99 0,99 0,99 1,0 1,0 
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As métricas apresentaram valores elevados (FIT=0,98; R²=0,99; KGE e 

componentes=0,99 a 1,0), indicando um excelente nível de desempenho entre os 

dados simulados e observados no treinamento.  Por conseguinte, os resultados na 

etapa de validação cruzada permaneceram excelentes (FIT=1,0; R²=0,99; KGE e 

componentes=0,99 e 1,0), demonstrando alta generalização do modelo. Isso confirma 

a eficiência do modelo RNN-NARX na predição de vazões na sub-bacia, assim como, 

em Mendonça et al. (2021), que encontraram valores de R² de 0,987 e 0,99 nas etapas 

de treinamento e validação cruzada, respectivamente. 

 

4.2.2 Closed Loop – simulação de vazão 

Após a parametrização da rede, as vazões foram simuladas (agora no Closed 

Loop) para avaliar a capacidade de generalização do modelo, ainda no período de 

referência. A Tabela 8 mostra os resultados quantitativos da avaliação de 

desempenho dessas simulações, que incluem as métricas FIT, R² e KGE. A avaliação 

buscou evidenciar o nível de precisão e confiabilidade do modelo RNN-NARX em 

ambos os cenários climáticos no período de referência. Os resultados da análise 

indicam um desempenho satisfatório do modelo em ambos os cenários, com as 

métricas FIT e KGE refletindo uma boa aderência às vazões observadas. 

 

Tabela 8: Métricas de desempenho das vazões na validação da RNN-NARX sob os 
cenários SSP2-4.5 e SSP5-8.5 para o período de referência 

Cenário FIT R² KGE KGEr KGEγ KGEβ 

SSP2-4.5 0,88 0,58 0,73 0,76 0,87 1,00 

SSP5-8.5 0,88 0,56 0,73 0,75 0,92 0,99 

 

O valor de ajuste (FIT) foi de 0,9 nos cenários SSP2-4.5 e SSP5-8.5, indicando 

que o modelo apresentou precisão confiável (Nouri e Veysi, 2024). O índice KGE 

revelou um desempenho semelhante entre os cenários, com valores de 0,73 para 

SSP2-4.5 e SSP5-8.5, indicando que o modelo foi capaz de estimar as vazões com 

boa precisão, conforme os critérios de desempenho definidos por Mai et al. (2022). O 

componente de correlação (r) foi sutilmente mais forte no cenário SSP2-4.5 (0,76) em 

comparação com o SSP5-8.5 (0,75), sugerindo um nível de desempenho médio. O 

componente γ, que reflete a variabilidade das estimativas, apresentou valores de 0,87 
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para o cenário SSP2-4.5 e 0,92 para o SSP5-8.5, classificando ambas as estimativas 

como boas. Por fim, os valores do componente β foram de 1 para o cenário SSP2-4.5 

e 0,99 para o SSP5-8.5, indicando uma excelente performance no viés. Esses 

resultados mostram que o modelo consegue capturar parte significativa da 

variabilidade nas vazões observadas. Porém, pode-se constatar que o desempenho 

foi afetado por um erro sistemático nas precipitações projetadas pelo GCM, 

caracterizada pelo atraso no pico das chuvas máximas. O atraso de pico nas 

projeções CMIP6 dos GCMs é influenciado, principalmente, pelos vieses dos GCMs. 

O estudo de Tebaldi et al. (2021) demonstrou que as trajetórias individuais dos GCMs, 

sob os diferentes cenários, causam um atraso em comparação com as projeções 

médias de um multimodelo. 

A Figura 19 mostra o gráfico de dispersão, comparando as vazões simuladas 

para os cenários climáticos SSP2-4.5 e SSP5-8.5 e as vazões observadas do período 

de referência (2009 a 2021). 

 

Figura 19: Dispersão das vazões diárias observadas e estimadas durante a 
validação da RNN-NARX para os cenários SSP2-4.5 (a) e SSP5-8.5 (b) no período 

de referência (2009-2021) 
 

É possível observar a subestimação das vazões máximas pelo modelo RNN-

NARX, em ambos os cenários (Figura 19). Esse comportamento sugere que o modelo 

apresenta limitações para simular vazões máximas. Logo, técnicas de correção de 
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viés são necessárias na mitigação de erros sistemáticos em vazões simuladas, 

provenientes de dados climáticos projetados (Lin et al. 2019). 

 

4.2.3 Correção de Viés 

Para a correção de viés, o método EQM, foi aplicado ao período de referência 

com dados observados e simulados pela RNN-NARX, que tiveram como entradas as 

precipitações simuladas pelo GCM- GFDL-ESM4, seguindo os cenários SSP2-4.5 e 

SSP5-8.5. A Figura 20 apresenta as equações obtidas para correção das vazões 

futuras via método EQM no período de referência (2009 a 2021). 

(a) SSP2-4.5 

 

(b) SSP5-8.5 

 

Figura 20: Equações para a correção das vazões simuladas pelo método EQM para 
o cenário SSP2-4.5 (a) e SSP5-8.5 (b), no período de referência (2009-2021) 

 

Na Figura 21 são mostradas as curvas de distribuição cumulativa das vazões 

observadas, estimadas e corrigidas, para ambos os cenários climáticos (SSP2-4.5 e 

SSP5-8.5). 
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Figura 21: Curvas de vazões observadas, estimadas e corrigidas para os cenários 
SSP2-4.5 (a) e SSP5-8.5 (b), para o período de referência (2009-2021) 

 

Observa-se na Figura 21 que as vazões simuladas (linha preta) subestimam os 

valores máximos, uma limitação já identificada previamente. No entanto, as vazões 

corrigidas (linha vermelha) demonstram uma maior aproximação das vazões 

observadas (linha azul), especialmente nas extremidades, em ambos os cenários 

analisados. Essa melhoria é destacada pelo desempenho superior da métrica de 

variabilidade KGEγ. A Tabela 9 apresenta as métricas de desempenho (FIT, R², KGE 

e suas componentes) antes e depois da correção de viés nas vazões simuladas pela 

RNN-NARX, sob os cenários SSP2-4.5 e SSP5-8.5, para o período de referência. 

 

Tabela 9: Valores das métricas de desempenho antes e depois da correção de viés 
nas vazões simuladas pela RNN-NARX, sob os cenários SSP2-4.5 e SSP5-8.5, para 

o período de referência (2009-2021) 

SSP2-4.5 

Métricas Antes Depois 

FIT 0,88 0,87 

R² 0,58 0,56 

KGE 0,73 0,75 

KGEr 0,76 0,75 

KGEγ 0,87 0,98 

KGEβ 1,0 1,0 

SSP5-8.5 
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 Antes Depois 

FIT 0,88 0,87 

R² 0,56 0,54 

KGE 0,73 0,74 

KGEr 0,75 0,74 

KGEγ 0,92 0,98 

KGEβ 0,99 1,0 

 

Conforme o exposto na Tabela 9, os valores de FIT permaneceram 

consistentes em torno de 0,9, indicando simulações com precisão confiável, bem 

como o R² (~0,6-0,5). O índice KGEr apresentou valores de 0,75 e 0,74 nos cenários 

SSP2-4.5 e SSP5-8.5, respectivamente, com uma redução de 0,01 em ambos os 

cenários após a correção. No entanto, a principal melhoria ocorreu na componente de 

variabilidade (KGEγ), que aumentou de 0,87 para 0,98 no cenário SSP2-4.5 e de 0,92 

para 0,98 no SSP5-8.5. Isso indicou uma melhoria de "bom" para "excelente" na 

variabilidade da série simulada. Além disso, o KGEβ manteve um desempenho 

excelente, com valor igual a 1 em ambos os cenários. O que refletiu em uma melhora 

no índice geral KGE, que atingiu 0,75 e 0,74 para SSP2-4.5 e SSP5-8.5, 

respectivamente. Esse aprimoramento refletiu no índice geral KGE, que atingiu 0,75 

no SSP2-4.5 e 0,74 no SSP5-8.5. Após a correção, o desempenho geral das 

simulações foi classificado como “confiável”, “bom” e “excelente”. Ressaltando-se a 

importância de corrigir vazões simuladas por modelos que utilizam projeções 

climáticas provenientes de GCMs. 

 

4.3 PERÍODO FUTURO 

4.3.1  Closed Loop -Simulação das vazões sob influência das mudanças 

climáticas 

As equações de correção de viés (na Figura 20) foram aplicadas às vazões 

simuladas entre 2022 a 2100, considerando os cenários climáticos SSP2-4.5 e SSP5-

8.5, respectivamente. Assim, as Figuras 22 e 23 apresentam os hidrogramas para o 

período de referência (2009 a 2021), e futuro (2022 a 2100). Esses gráficos ilustram 

o comportamento das vazões simuladas pela RNN-NARX, a partir das precipitações 

simuladas pelo GFDL-ESM4. 
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Figura 22: Vazão simulada para o cenário SSP2-4.5 para o período futuro (2022-
2100) 

 

Figura 23: Vazão simulada para o cenário SSP5-8.5 para o período futuro (2022-
2100) 

 

Observam-se as variações nas vazões mínimas e máximas, tanto no cenário 

de médias emissões (SSP2-4.5), quanto no cenário de altas emissões (SSP5-8.5), 
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apresentadas na Figura 22 e Figura 23, respectivamente. As variações nas vazões 

máximas são mais perceptíveis, pois essas vazões são mais dependentes de 

fenômenos metrológicos, tais como a Zona de Convergência Intertropical (ZCIT) e a 

Zona de Convergência do Atlântico Sul (ZCAS) que atuam na Amazônia durante a 

estação chuvosa (Amanajás e Braga, 2012; Moura e Vitorino 2012). Por outro lado, 

as vazões mínimas, com variações menos perceptíveis, ocorrem durante a estiagem 

e estão diretamente relacionadas ao volume de água subterrânea armazenado nas 

cheias. Isso se deve às características da sub-bacia do rio Guamá, que favorecem a 

infiltração por conta dos solos profundos e da baixa declividade (Mendonça et al., 

2021). De qualquer forma, é importante considerar que a variação das vazões, pelo 

menos nas próximas duas décadas, pode estar diretamente associada aos impactos 

das mudanças climáticas. Isso porque estima-se que, até 2040, a temperatura global 

atingirá um aumento de até 2°C em relação aos níveis pré-industriais, conforme 

destacado por Park et al. (2022). Essa elevação térmica pode influenciar 

significativamente os padrões hidrológicos, alterando a disponibilidade e a distribuição 

dos recursos hídricos. A seguir, as vazões simuladas são apresentadas na Figura 24, 

distribuídas por mês, para ambos os cenários. 

 

Figura 24: Distribuição das vazões simuladas por mês para o cenário SSP2-4.5 (a) e 
SSP5-8.5 (b), no período futuro (2022 a 2100) 

 

A Figura 24 apresenta a distribuição das vazões simuladas por mês para os 

cenários SSP2-4.5 e SSP5-8.5 no período de 2022 a 2100. Comparando-se os 

cenários, observa-se que ambos os cenários exibem um padrão sazonal semelhante, 

com maiores vazões concentradas entre os meses de janeiro e junho e menores 
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vazões entre julho e dezembro. No entanto, o SSP5-8.5 (Figura 24-b), que representa 

um cenário de emissões mais intensas, apresenta uma maior variabilidade nas 

vazões, evidenciada pela maior dispersão dos valores e presença de mais outliers. 

Esses resultados sugerem que mudanças climáticas mais severas podem resultar em 

eventos hidrológicos extremos mais frequentes e intensos. 

 

4.4 ANÁLISE DE TENDÊNCIA NAS VAZÕES SIMULADAS 

A Figura 25 mostra a análise de tendência através do método MK, que foi 

aplicado às vazões médias anuais observadas (2009 a 2021) e vazões simuladas a 

partir de 2022, sob os cenários SSP2-4.5 e SSP5-8.5. 

 

Figura 25: Tendência das vazões médias anuais para os cenários SSP2-4.5 (a) e 
SSP5-8.5 (b) 

 

A partir da Figura 25, obtêm-se as tendências das vazões médias, para o futuro, 

nos cenários climáticos SSP2-4.5 (médias emissões) e SSP5-8.5(altas emissões). No 

cenário SSP2-4.5, não foi identificada uma tendência significativa nas vazões, apesar 

de decrescente, conforme os resultados do teste MK (Z = -0,57; 𝑝-valor=0.569) e 

estimador de Sen de -0,077 m³/s. Esses resultados indicam estabilidade no regime 

hidrológico. Outrossim, o coeficiente de variação (CV) de 22,11% sugere uma 

variabilidade moderada, mas sem mudanças relevantes ao longo do tempo. Em 

contraste, no cenário SSP5-8.5, foi detectada uma tendência decrescente 

significativa, com base nos resultados do teste MK (Z=-2,59; p-valor=0.00968) e 

estimador de Sen de -0,271 m³/s, apontando para uma redução gradual nas vazões. 

O CV de 21,76% mostra uma variabilidade semelhante ao cenário de médias 

emissões, porém em um contexto de declínio na disponibilidade hídrica da sub-bacia 
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hidrográfica do rio Guamá. Esses resultados destacam que, enquanto o cenário de 

emissões médias mantém a estabilidade das vazões, o cenário de altas emissões 

pode levar a impactos hidrológicos adversos, com redução na disponibilidade de água 

na sub-bacia, reforçando a importância de políticas de mitigação das mudanças 

climáticas para preservar os recursos hídricos. 
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5 CONCLUSÃO 

O presente estudo demonstrou o bom desempenho de um modelo hidrológico 

via aprendizado de máquina com RNA, em particular a RNN-NARX, ao estimar vazão 

em cenários de mudanças climáticas, em uma bacia hidrográfica da Amazônia. As 

vazões simuladas apresentaram os padrões sazonais dos dados observados, todavia 

ocorre subestimação nas magnitudes dos eventos máximos, associado à 

subestimação presente nas projeções das precipitações, que são os vetores de 

entrada do modelo. A subestimação é resultante de vieses provenientes dos GCMs. 

Esses vieses foram corrigidos através do método EQM, resultando em melhores 

métricas de desempenho determinadas entre vazões observadas e simuladas, tendo 

como entradas as precipitações projetadas nos cenários SSP2-4.5 e SSP5-8.5 para o 

período de referência (2009-2021). Nesse caso o desempenho da modelagem foi 

classificado como “confiável”, “bom” e “excelente” com valores de FIT de ~0,9 e KGE 

de 0,74-0,75 em ambos os cenários (SSP2-4.5 e SSP5-8.5). A correção de viés, 

também, foi aplicada à simulação das vazões de longo prazo, i.e., de 2022 a 2100, 

considerando os dois cenários supramencionados, permitindo a análise de tendencia 

das vazões resultantes. Assim, no cenário SSP2-4.5 (emissões médias), não foi 

identificada uma tendência significativa nas vazões, com um estimador de Sen de -

0,07704, os resultados do teste MK (Z = -0,57; 𝑝-valor=0.569), indicando estabilidade 

no regime hidrológico. O coeficiente de variação (CV) de 22,11% sugere uma 

variabilidade moderada, mas sem mudanças relevantes ao longo do tempo. Em 

contraste, no cenário SSP5-8.5 (emissões altas), foi detectada uma tendência 

decrescente significativa, com um estimador de Sen de -0,27110, os resultados do 

teste MK (Z=-2,59; p-valor=0.00968), apontando para uma redução gradual nas 

vazões médias anuais. O CV de 21,76% mostra uma variabilidade semelhante ao 

cenário SSP2-4.5, porém em um contexto de declínio na disponibilidade hídrica da 

sub-bacia hidrográfica do Rio Guamá. A simulação e análise de vazões futuras sob a 

influência das mudanças climáticas devem ser popularizadas, visando fomentar 

políticas públicas e estratégias de adaptação frente ao aquecimento global. 
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