Amanda de Cassia Lobato Soares

TENDENCIA DE VAZOES
MODELADAS VIA APRENDIZADO DE
MAQUINA E MUDANCAS CLIMATICAS
DE BACIA HIDROGRAFICA DA
AMAZONIA

DISSERTACAO DE MESTRADO

Instituto de Tecnologia

Programa de Pos-Graduacdo em Engenharia Civil

Orientador Prof. Claudio José Cavalcante Blanco, PhD

Belém — Par& — Brasil
2025




Amanda de Cassia Lobato Soares

TENDENCIA DE VAZOES MODELADAS VIA APRENDIZADO DE MAQUINA E
MUDANCAS CLIMATICAS DE BACIA HIDROGRAFICA DA AMAZONIA

Dissertacdo apresentada ao Programa
de Pés-graduacao em Engenharia Civil,
da Universidade Federal do Par4, como
requisito para obtencdo do Titulo de

Mestre em Engenharia Civil.

Area de concentracdo: Engenharia

Hidrica.

Orientador: Professor Claudio José Cavalcante Blanco, Ph.D.

Belém — Para — Brasil
2025



SERVIGCO PUBLICO FEDERAL

UNIVERSIDADE FEDERAL DO PARA

INSTITUTO DE TECNOLOGIA

PROGRAMA DE POS-GRADUAGCAO EM ENGENHARIA CIVIL

, PPGEC

TE’NDENCIA DE VAZOES MODELADAS VIA APRENDIZADO DE
MAQUINA E MUDANCAS CLIMATICAS DE BACIA HIDROGRAFICA
DA AMAZONICA

AUTORA: i
AMANDA DE CASSIA LOBATO SOARES

DISSERTACAO SUBMETIDA A BANCA
EXAMINADORA APROVADA PELO COLEGIADO DO
PROGRAMA DE POS-GRADUACAO EM
ENGENHARIA CIVIL DO INSTITUTO DE
TECNOLOGIA DA UNIVERSIDADE FEDERAL DO
PARA, COMO REQUISITO PARA OBTENGCAO DO
GRAU DE MESTRA EM ENGENHARIA CIVIL NA
AREA DE RECURSOS HIDRICOS E SANEAMENTO
AMBIENTAL.

APROVADO EM: 07/03/2025.

Documento assinado digitalmente

BANCA EXAMINADORA: GOV e ot cmenamco

Verifique em https://validar.iti.gov.br

Prof. Claudio José Cavalcante Blanco, Ph.D.
Orientador

. Documento assinado digitalmente

ub AUGUSTO CESAR DE MENDONCA BRASIL
Data: 10/03/2025 13:01:15-0300
Verifique em https://validar.iti.gov.br

Prof. Dr. Augusto César Mendonga Brasil
Membro Externo (UnB)

Documento assinado digitalmente

ub JOSIAS DA SILVA CRUZ
Data: 10/03/2025 09:45:28-0300

Verifique em https://validar.iti.gov.br

Eng. Dr. Josias da Silva Cruz
Membro Externo (UFPA)

Documento assinado digitalmente

ub MARIANE FURTADO GONCALVES
g Data: 10/03/2025 10:03:43-0300

Verifique em https://validar.iti.gov.br

Profa. Dra. Mariane Furtado Goncalves
Membro Interno (UFPA)

Visto:

Prof. Dr. Dénio Ramam Carvalho de Oliveira
Coordenador do PPGEC / ITEC / UFPA




Dados Internacionais de Catalogacé&o na Publicagéo (CIP) de acordo
com ISBD Sistema de Bibliotecas da Universidade Federal do Para
Gerada automaticamente pelo moédulo Ficat, mediante os dados

S676t Soares, Amanda de Cassia Lobato.
Tendéncia de Vazdes Modeladas via Aprendizado de
Maquina e Mudancas Climaticas de Bacia Hidrografica da
Amazﬁfci)% /fAmIandla de Cassia Lobato Soares. — 2025.
.. il. color.

Orientador(a): Prof. Dr. Claudio José Cavalcante Blanco
Dissertacdo (Mestrado) - Universidade Federal do Pard, Instituto
de Tecnologia, Programa de Pés-Graduagdo em Engenharia
Civil, Belém, 2025.

1. GCM GFDL-ESM4. 2. Rede Neural Recorrente. 3.
NARX. 4. NEX-GDDP-CMIP6. I. Titulo.
CDD 333.91




AGRADECIMENTOS

Ao0s meus pais, avls, irméo e tia, obrigada pelo amor, criacédo e lar.

Aos meus colegas de graduacgdo e ensino médio.

A Universidade Federal do Para e aos membros do Laboratério de Engenharia Hidrica
e Mudancas Climaticas (LEHMC), pela resisténcia e contribuicdo no avanco da ciéncia
do pais.

Ao prof. Claudio José Cavalcante Blanco, PhD, pelo incentivo e suporte a pesquisa.

Seu profissionalismo sera uma eterna inspiragdo para mim.



“A histoéria da sociedade até aos nossos dias é a

histéria da luta de classes.” (Karl Marx)



RESUMO

O objetivo deste estudo € analisar a tendéncia das vaz6es modeladas via aprendizado
de maquina e sob influéncia das mudancas climaticas de uma bacia hidrogréafica
localizada na Amazbnia, visando identificar possiveis modificacbes no regime
hidrolégico em resposta aos cenarios climaticos projetados do CMIP6. A vazao foi
simulada utilizando uma Rede Neural Recorrente Nao-Linear Autorregressiva com
Entradas Exdégenas (RNN-NARX). A andlise de tendéncias foi realizada utilizando o
teste Mann-Kendall (MK), o estimador Sen’s Slope e o coeficiente de variancia
aplicado as vazbes médias anuais de longo prazo. A precipitacdo observada foi obtida
do banco de dados da ANA (Agéncia Nacional de Aguas e Saneamento Basico). A
precipitacdo projetada futura foi obtida do modelo GCM-GFDL-ESM4, sob os cenarios
climaticos: SSP2-4.5 (médias emissfes) e SSP5-8.5 (altas emissfes). As vazoes
maximas simuladas pela RNN-NARX no periodo de referéncia foram subestimadas.
Essa subestimacdo ocorreu devido ao viés inerente ao GCM utilizado. Assim, o
método EQM (Empirical Quantile Mapping) foi aplicado para corrigir o viés entre as
vazfes simuladas e observadas no periodo de referéncia. Ap6s a correcao, 0
desempenho geral das simulacdes foi classificado como confidvel, bom e excelente,
com FIT (~0,9) e KGE (0,74-0,75) em ambos os cenarios, refletindo uma boa
aderéncia as vazdes observadas. A correcdo de viés também foi aplicada a simulacao
das vazdes de longo prazo (2022 a 2100), considerando os dois cenarios
supramencionados, permitindo a analise de tendéncias das vazdes resultantes. Os
resultados do teste MK (Z = -0,57; p-valor=0.569), com um estimador de Sen’s Slope
(B = -0,07704), ndo indicaram uma tendéncia significativa nas vazdes, para o cenario
SSP2-45. Em contraste, no cenario SSP5-8.5, foi detectada uma tendéncia
decrescente significativa, com os resultados do teste MK (Z=-2,59; p-valor=0,00968)
e com um estimador de Sen’s Slope (8 =-0,27110). O que aponta para uma reducéo
nas vazdes médias anuais. Em ambos os cenarios, o coeficiente de variancia
demonstrou uma variabilidade moderada de (CV = 22,11% no SSP2-4.5; e CV
=21,76% no SSP5-8.5). Porém, no cenario de altas emissdes, essa variabilidade esta
inserida em um contexto de declinio na disponibilidade hidrica da sub-bacia
hidrografica do Rio Guama.

Palavras-chave: GCM GFDL-ESM4, Rede Neural Recorrente, NARX, NEX-GDDP-
CMIP6.



ABSTRACT

The objective of this study is to analyze the trend of modeled streamflow via machine
learning and under the influence of climate change in a river basin located in the
Amazon, aiming to identify possible changes in the hydrological regime in response to
the projected climate scenarios of CMIP6. The streamflow rate was simulated using a
Nonlinear Autoregressive Recurrent Neural Network with Exogenous Inputs (RNN-
NARX). Trend analysis was performed using the Mann-Kendall (MK) test, the Sen’s
Slope estimator and the coefficient of variance applied to the long-term mean annual
flows. The observed precipitation was obtained from the ANA (National Water and
Sanitation Agency) database. The projected future precipitation was obtained from the
GCM-GFDL-ESM4 model, under the climate scenarios: SSP2-4.5 (medium emissions)
and SSP5-8.5 (high emissions). The maximum streamflow simulated by RNN-NARX
in the reference period were underestimated. This underestimation occurred due to the
inherent bias of the GCM used. Thus, the EQM (Empirical Quantile Mapping) method
was applied to correct the bias between the simulated and observed streamflow in the
reference period. After corrections, the overall performance of the simulations was
classified as reliable, good and excellent, with FIT (~0.9) and KGE (0.74-0.75) in both
scenarios, reflecting a good adherence to the observed streamflow. Bias correction
was also applied to the long-term streamflow simulation (2022 to 2100), considering
the two scenarios, allowing the analysis of trends in the resulting flows. The results of
the MK test (Z = -0.57; p-value = 0.569), with Sen’s Slope estimator ( =-0.07704), did
not indicate a significant trend, for the SSP2-4.5 scenario. In contrast, in the SSP5-8.5
scenario, a significant decreasing trend was detected, with the results of the MK test
(Z=-2.59; p-value=0.00968) and with Sen’s Slope estimator (3 = -0.27110),
demonstrating a reduction in the mean annual streamflow. In both scenarios, the
coefficient of variance demonstrated moderate variability (CV = 22.11% in SSP2-4.5;
and CV = 21.76% in SSP5-8.5). However, in the high emissions scenario, this
variability is inserted in a context of declining water availability in the Guama River sub-
basin.

Keywords: GCM GFDL-ESM4, Neural Recurrent Network, NARX, NEX-GDDP-
CMIP6.
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1 INTRODUCAO

As mudancas climaticas tém se manifestado de forma intensa e frequente, com
Impactos severos sobre os sistemas naturais e humanos em escala global. Estudos
baseados em simulacdes climaticas indicam que a Terra esta em um processo
continuo de aquecimento, resultando em uma série de eventos extremos, como secas,
enchentes, tempestades e aumento do nivel do mar (Abhijeet et al., 2023; Masson-
Delmotte et al., 2021). A complexidade dessas mudancas exige compreensédo dos
impactos em diferentes setores, incluindo dos recursos hidricos, que séo
fundamentais para o abastecimento humano, producdo de energia e agricultura
(Vaidyanathan, 2024). Um dos grandes desafios para a ciéncia climética atual € a
previsdo de como os recursos hidricos, em particular a vazao dos rios, responderéo
as mudancas do clima (Tayal et al., 2024). Essas proje¢des tornam-se cada vez mais
relevantes, visto que dados do Copernicus Data Space Ecosytem, da Agéncia
Espacial Europeia (ESA), mostram que 2024 foi o primeiro ano a exceder 1,5°C acima
dos niveis pré-industriais (Copernicus, 2024). Nesse contexto, a simulacdo da vazdo
dos rios permite analisar o risco de inundagdes e outras condigbes que afetam
diretamente a seguranca hidrica e o planejamento de politicas de mitigacdo e
adaptacao (Gharsallaoui et al., 2024).

Os Modelos de Circulagao Geral (GCM’s) sdo amplamente utilizados para
projecdes de variaveis climaticas, entre elas, a precipitacao, que € a principal variavel
forgante para a simulagao de variaveis hidrolégicas, tal qual vazdes. Assim, os GCM’s
podem ser utilizados para obter respostas dos sistemas hidroldgicos as variacdes
climaticas. Como por exemplo, a seca extrema gque ocorreu ha regido amazonica, que
iniciou no verdo austral de 2022-23 e se estendeu até 2024. Essa seca comegou mais
cedo do que as anteriores (Marengo et al., 2024), tornando 2023 0 ano mais quente
desde 1980 em grande parte da regido, devido as anomalias de temperatura de até
+2,7°C. O desmatamento, somado as mudancgas climéticas, ameaca empurrar a
floresta amazonica para um "ponto de inflexao" irreversivel, especialmente nas areas
afetadas por fragmentacéo florestal e degradacéo (Espinoza et al., 2024). Sendo
assim, ha a necessidade de monitorar 0s eventos extremos, embora haja dificuldades
em manter as estacdes de monitoramento em pleno funcionamento.

Para solucionar esses desafios em bacias hidrograficas, especialmente em
regides tropicais, técnicas de aprendizado de maquina, como Redes Neurais Artificiais

(RNAs), tém se mostrado particularmente eficazes. Visto que as RNAs sdo capazes
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de reconhecer padrdes em séries temporais, ajustando seus pesos sinapticos e bias
por meio de algoritmos de treinamento, o que as torna ideais para a simulacédo de
fendmenos naturais. Esses modelos tém a vantagem de generalizar os padrdes
aprendidos durante o treinamento, permitindo a projecdo de eventos futuros. As
Redes Neurais Recorrentes (RNNs), uma subclasse avancada das RNAs, destacam-
se por sua capacidade de utilizar memoarias internas (feedback), permitindo capturar
e representar dindmicas temporais complexas (Pirhooshyaran e Snyder, 2020).
Dentro dessa classe, a abordagem Autorregressiva Nao-linear com Entradas
Exégenas (RNN-NARX) tem se consolidado como uma ferramenta eficaz para
modelar sistemas de entrada e saida com néo linearidades acentuadas. Essa
abordagem tem sido amplamente aplicada na simulacédo de variaveis hidrologicas
(Wang e Chen, 2022). Duas configuragdbes de RNN-NARX s&o essenciais na
modelagem, com dois modos de operacéo: Open Loop e Closed Loop. No modo open-
loop (série-paralelo), os valores observados (alvo) sdo manualmente inseridos na
entrada, utilizando uma arquitetura feedforward, onde as informagdes fluem em uma
Unica direcdo (Menezes e Barreto, 2008). J& no modo Closed Loop (paralelo), a saida
estimada do modelo é realimentada diretamente na entrada. Para simulacdes de
longo prazo, a estrutura open-loop deve ser convertida em Closed Loop (Chang et al.,
2016). Nesse formato, os valores observados na entrada sdo gradualmente
substituidos por estimativas do préprio modelo, tornando-o autbnomo, uma aplicacdo
relevante para RNN-NARX (Mendonga et al., 2023).

Assim, objetivo é simular vazdes para uma sub-bacia hidrografica da Amazonia,
considerando dois cenarios climaticos do CMIP6 e analisar os impactos na
disponibilidade hidrica da sub-bacia até o ano de 2100, por meio da analise de
tendéncia. As vazbes diarias foram simuladas usando RNN-NARX, tendo como
entrada precipitacdo projetada do GCM GFDL-ESM4. A analise de tendéncia foi
elaborada via teste Mann Kendall, estimador Sen’s Slope e coeficiente de variancia.
A metodologia adotada contribui para a compreensédo dos impactos das mudancas
climaticas nos recursos hidricos, relacionando-se diretamente com os objetivos de
desenvolvimento sustentavel da ONU: ODS 2 (Fome Zero) e ODS 13 (A¢éo Climética)
(ONU, 2024). A reducéo da disponibilidade hidrica pode afetar a seguranga alimentar
e a agricultura sustentavel, enquanto a analise de cenarios climaticos apoia acdes
para mitigar os efeitos das mudancas climaticas, alinhando-se as metas globais de

sustentabilidade.
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1.1  OBJETIVOS
111 Geral
Analisar a influéncia das mudancas climaticas nas vazdes de uma bacia
hidrografica localizada na Amazonia brasileira, utilizando duas projecdes climaticas
futuras do CMIP6 até o ano de 2100. Para isso, foram realizadas analises de tendéncia
nas vazoes, visando identificar possiveis modificacfes no regime hidrologico da regido

em resposta aos cenarios climaticos projetados.

1.1.2 Especificos

- Desenvolver um modelo de rede neural recorrente para simular vazdes
diarias, utilizando dados historicos;

- Avaliar o desempenho do modelo no periodo de referéncia (2009-2021),
comparando vazdes simuladas as observadas;

- Aplicar o modelo parametrizado para simular vazdes diarias no periodo -
futuro (2022-2100), utilizando dados projetados por um modelo de
circulacao geral (GCM);

- Avaliar a tendéncia nas vazdes simuladas, conforme o teste Mann-Kendall,

estimador Sen’s Slope e coeficiente de variancia.
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2 FUNDAMENTAGCAO TEORICA
2.1  CICLO HIDROLOGICO

O ciclo hidrolégico pode ser considerado um fenémeno global de circulacéo
fechada da agua entre a superficie terrestre e a atmosfera, impulsionado pela energia
solar associada a gravidade e a rotacao terrestre (Figura 1). Esse intercambio entre
as circulacdes ocorre em dois sentidos: i) no sentido superficie-atmosfera, onde o fluxo
de &gua ocorre fundamentalmente na forma de vapor, como decorréncia dos
fenbmenos de evaporacéo e de transpira¢ao; ii) no sentido atmosfera-superficie, onde
a transferéncia de agua ocorre em qualquer estado fisico, sendo mais significativas
(em termos globais), as precipitacbes de chuva e neve (Tucci, 2009). O ciclo
hidrolégico contribui para muitos processos dindmicos ambientais, como movimento
de nutrientes, contaminacao, equilibrio de solutos e transporte de sedimentos, porém,
a compreensao de todos esses processos, no tempo e espaco, é complexa (Chow et
al., 1994).
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Figura 1: Principais fluxos e armazenamentos
Fonte: Markstrom et al. (2015)
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O ciclo hidroloégico também pode ser representado de forma simplificada
mediante o conceito de ‘sistema’ (Shiklomanov, 1998). Na escala global, o ciclo
hidrologico € considerado um ‘sistema fechado’, cujo resultado indica a quantidade de
agua disponivel no solo, rios, lagos, vegetacdo Umida e oceanos. Na escala local, os
sistemas de agua podem ser divididos em subsistemas hidroldgicos. O estudo desses
subsistemas, aparentemente independentes, € importante para entender as
demandas existentes, na quais o elemento de andlise é a bacia hidrografica (Tucci,
2009). A Figura 2 apresenta as contribuicdes das principais bacias hidrograficas do
mundo, em descarga diaria (m3/s).
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Figura 2: Vazéo diaria média de longo prazo na saida das principais bacias
hidrogréaficas do mundo
Fonte: Shiklomanov (1998)

2.2  DISPONIBILIDADE HIDRICA

A quantidade de agua no planeta ndo diminuira em escalas de tempo inferiores
as geoldgicas devido aos ciclos hidroldgicos fechados (Oki et al., 2006). Todavia, a
escassez de agua pode se tornar uma realidade generalizada dentro de algumas
décadas (Rosegrant; Cai; Cline, 2003). A explicacdo mais utilizada para a pequena
guantidade de agua facilmente acessivel, € que embora haja muita agua na Terra,
apenas cerca de 2,5% € agua doce, porém, a maior parte dessa agua é armazenada
como geleiras ou aguas subterraneas profundas. No entanto, essa explicacdo esta
parcialmente correta, pois as avaliacbes devem se concentrar principalmente nos
fluxos dos recursos hidricos, ao invés de focar no seu armazenamento. Com base
nessa afirmacéo, expfe-se que a quantidade de dgua armazenada em todos 0s rios
do mundo é cerca de 2.000 km3, muito inferior a 3.800 km3/ano que é retirado
anualmente de agua (Oki e Kanae, 2006; Shiklomanov, 1998).
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Assim, apesar da abundancia de agua em toda a extensao do globo terrestre,
a porcdo disponivel para consumo humano representa uma parcela pequena e
passivel de escassez (Tucci, 2009). Portanto, os estudos voltados a analise da
disponibilidade hidrica sdo importantes para adquirir conhecimentos necessarios as
solucdes e/ou adequacéo dos recursos hidricos diante da crise climéatica.

A partir da nota técnica N° 16/2016/SPR, a Agéncia Nacional de Aguas e
Saneamento Basico (ANA) estabeleceu o conceito geral para disponibilidade hidrica,
que deve ser entendida como a quantidade de agua que serve de referéncia para
contabilizacdo do balanco entre oferta e demanda. O documento destaca que esta
disponibilidade representa uma condi¢do de oferta bruta de agua sobre a qual define-
se 0 quanto desse recurso ainda poderia ser alocado para diversos fins ou para

mensurar possiveis estresses hidricos.

2.2.1 Disponibilidade Hidrica nas Regi6es Hidrogréaficas Brasileiras

O Brasil é rico no que se refere a disponibilidade de recursos hidricos, mas
apresenta uma grande variacdo espacial e temporal na quantidade de agua disponivel
para consumo. Essas variacbes de regimes fluviométricos, tanto espaciais como
temporais, devem-se a combinacdo das variadas condi¢cdes climaticas com as
caracteristicas morfolégicas das bacias hidrograficas brasileiras. Com base nisso,
para a gestdo das aguas no Brasil, ttm-se as bacias hidrograficas, no ambito do
planejamento territorial, como a unidade béasica de anélise para o desenvolvimento de
medidas com o objetivo de promover a integracao entre a gestao dos recursos hidricos
e a gestdo ambiental (ANA, 2024).

Este recorte territorial elaborado a partir de divisores de aguas foi instituido
através da Politica Nacional de Recursos Hidrico (Lei n°® 9.433, de 8 de janeiro de
1997), que dividiu o pais em 12 Regibes Hidrograficas (RH), sédo elas: Amazébnica,
Tocantins-Araguaia, Atlantico Nordeste Ocidental, Parnaiba, Atlantico Nordeste
Oriental, S&o Francisco, Atlantico Leste, Paraguai, Parana, Atlantico Sudeste, Uruguai
e Atlantico Sul (Figura 3) (BRASIL, 1997).
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Figura 3: Regides hidrograficas brasileiras
Fonte: ANA (2024)

Apesar da elevada disponibilidade hidrica média por habitante no Brasil, que é
de aproximadamente 13.000 méd/habitante/ano, as disparidades regionais sao
significativas quando analisadas por regido hidrografica. Na regido amazénica, por
exemplo, a disponibilidade hidrica per capita supera 213.445 m3/hab/ano, refletindo a
abundéancia de recursos hidricos na area (ANA, 2015). No entanto, na maioria das
regides hidrograficas (RHs), a disponibilidade é drasticamente inferior a média
nacional, como € o caso das regides do Parnaiba, Atlantico Nordeste Ocidental e
Atlantico Nordeste Ocidental Oriental, como pode ser observado na Tabela 1. Essa

desigualdade evidencia os desafios relacionados a distribuicdo desigual dos recursos



21

hidricos no pais, com algumas regides enfrentando escassez relativa em comparacao

com outras.

Tabela 1: Populagéo, densidade demografica, disponibilidade hidrica e
disponibilidade hidrica per capita das regides hidrograficas brasileiras

A ~ Densidade . - Dispopib.ilida
Regido Area de Populacao populacional Dlspo[nb_lllda de h|dr|pa
raograica g Ot T SN pecente
m?)
e/ano)
Amazbnica 3.879.207 9.694.728 25 65.617 213.445,7
Tocantins-Araguaia 920.087 8.572.716 9,3 3.098 11.396,4
Parnaiba 333.056 4.152.865 12,5 325 2.468,0
Atlantico Nordeste Ocidental 274.350 6.244.419 22,8 397 2.005,0
Atlantico Nordeste Oriental 286.761 24.077.328 84,0 218 285,5
Séo Francisco 638.466 14.289.953 22,4 875 1.931,0
Atlantico Leste 388.160 15.066.543 38,8 271 567,2
Parana 879.873 61.290.272 69,7 4.390 2.258,8
Paraguai 363.445 2.165.938 6,0 1.023 14.894,9
Uruguai 174.801 3.922.873 22,4 550 4.421,5
Atlantico Sudeste 214.629 28.236.436 131,6 1.325 1.479,8
Atlantico Sul 186.673 12.976.554 69,5 513 1.246,7
Brasil 8.539.508  190.690.625 22,3 78.602 12.999,0
Média por RH 711.626  15.890.885 41 6.550 21.366,7
Fonte: ANA (2015)
2.2.2 Disponibilidade Hidrica no Tocantins-Araguaia

A regido hidrografica Tocantins-Araguaia (Figura 4), delimitada a leste pela

bacia Amazobnica e a oeste pela bacia Atlantico Nordeste Ocidental, abrange uma area

de aproximadamente 920 mil km2, o que corresponde a 10,8% do territério nacional.

Essa regido estende-se por seis unidades federativas: Goias (21%), Tocantins (30%),
Para (30%), Maranhao (4%), Mato Grosso (15%) e Distrito Federal (0,1%). A maior

parte de sua area esta localizada na regido Centro-Oeste, desde as nascentes dos
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rios Araguaia e Tocantins até sua confluéncia, seguindo em direcdo a regido Norte,
onde desagua (ANA, 2015).

O rio Araguaia, principal afluente da bacia, possui 2.600 km de extenséo e
abriga a llha do Bananal, a maior ilha fluvial do mundo. Ja o rio Tocantins, que nasce
no Planalto de Goias, a cerca de 1.000 metros de altitude, € formado pelos rios das
Almas e Maranh&o e percorre 1.960 km até sua foz. A confluéncia entre o rio Tocantins
e o Furo de Breves forma a Baia do Marapatd, que, por sua vez, integra o rio Para.

A sua disponibilidade hidrica é de 3.098 m3/s, ou seja, 4% da disponibilidade
hidrica nacional (ANA, 2015). A expanséao agricola na regido € uma das principais
atividades antropicas que tem contribuido com a reducdo da cobertura original
(desmatamento) dos biomas Amazonico e Cerrado na RH. Conforme a publicagéao
“Conjuntura dos Recursos Hidricos do Brasil 2013”, a RH Tocantins-Araguaia
apresenta ainda 39% e 60% de area de cobertura de vegetacdo remanescente do
bioma Amazbnico e de Cerrado, respectivamente, em relagcdo a sua area original
(ANA, 2015).
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2.3  MUDANCAS CLIMATICAS
2.3.1 Histoérico da Ciéncia Climatica

As bases cientificas para o estudo da ciéncia climatica remontam ao século
XIX. O fisico francés Joseph Fourier foi pioneiro ao propor, em 1824, a ideia de que a
atmosfera terrestre retém calor, comparando-a a uma estufa. Ele sugeriu que a
atmosfera age como uma barreira que mantém a superficie do planeta aquecida
(Fourier, 1824). Posteriormente, o cientista britanico John Tyndall avangou nessa
compreensao ao descobrir, em 1859, que certos gases, como o diéxido de carbono
(CO,) e o vapor d'agua, tém a capacidade de absorver e reemitir calor. Seus
experimentos foram fundamentais para elucidar o papel desses gases na regulagéo
da temperatura terrestre (Tyndall, 1859). Em 1896, o quimico sueco Svante Arrhenius
quantificou o impacto do CO, no clima. Seus resultados demonstraram que a
duplicacdo das concentragbes de CO, na atmosfera poderia elevar a temperatura
meédia da Terra de 5 a 6°C. Arrhenius também sugeriu que a queima de combustiveis
foésseis poderia contribuir para o aumento das concentracdes desse gas e,
consequentemente, para o aquecimento global (Arrhenius, 1896).

No século XX, o consenso cientifico e acdes globais evoluiram
significativamente. O Painel Intergovernamental sobre Mudancas Climaticas (IPCC)
foi estabelecido pela Organizacdo das Nacgdes Unidas (ONU), em 1988, para avaliar
e sintetizar o conhecimento cientifico relacionado ao clima. Desde seu primeiro
relatorio, publicado em 1990, o IPCC tornou-se a principal autoridade global no tema,
fornecendo avaliacBes abrangentes e atualizadas sobre as causas, impactos e
solucbes para o aquecimento global (IPCC, 1990). No século XXI, os esforcos
internacionais para combater as mudancas climéaticas ganharam impulso com o
Acordo de Paris, adotado em 2015 no ambito da ONU. Esse acordo estabeleceu a
meta de limitar 0 aumento da temperatura média global a menos de 2°C acima dos

niveis pré-industriais, com esforgos adicionais para restringir o aquecimento a 1,5°C.

2.3.2 Limiar de 1,5°C no Aquecimento Global
O aquecimento global refere-se ao aumento gradual da temperatura média da
atmosfera e dos oceanos préoximos a superficie da Terra, um fendmeno amplamente
documentado pela ciéncia climéatica (Masson-Delmotte, 2021). O limiar de 1,5° C
estabelecido pela comunidade internacional no Acordo de Paris refere-se a um

aquecimento médio global sustentado ao longo do tempo, e ndo a variagdes anuais,
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que podem apresentar flutuacées acima ou abaixo da tendéncia de longo prazo
(Nacgdes Unidas, 2015). Nesse contexto, estudos para o0 ano de 2022 demonstram que
as temperaturas atingiram 1,3°C acima dos niveis pré-industriais (Jones, 2023). No
ano seguinte, os valores mensais também registraram pelo menos 1,2 °C acima da
meédia correspondente ao periodo de 1850 a 1900. Embora o inicio de 2023 tenha
apresentado temperaturas semelhantes as de 2021 e 2022, o fim do evento La Nifia
marcou o inicio de uma trajetoria distinta. Na segunda metade do ano, as temperaturas
tornaram-se mais extremas, impulsionadas pelo fortalecimento do El Nifio. Os ultimos
sete meses de 2023 estabeleceram novos recordes de temperatura, incluindo julho,
gue registrou a maior média absoluta ja medida na Terra, e setembro, com a maior
anomalia mensal ja documentada. Grande parte da variacdo de temperatura entre
2022 e 2023 foi atribuida a transicdo de La Nifia para El Nifio, combinada com outros
fatores de variabilidade natural, como o aquecimento do Atlantico Norte, além de
contribuicbes modestas de outros elementos. Em 2024, o El Nifio continuou a
influenciar o aumento de temperaturas no primeiro semestre (Figura 5), antes de

enfraquecer em junho (Berkeley Earth, 2024).
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A longo prazo, o aquecimento global induzido pelas atividades humanas tem
elevado gradualmente as temperaturas a taxa de aproximadamente 0,2°C por década
(Berkeley Earth, 2024). A relevancia dessas tendéncias intensifica-se com os dados
do Copernicus Data Space Ecosytem, que indicam que 2024 foi o primeiro ano a
ultrapassar a marca de 1,5°C acima dos niveis pré-industriais, sendo as emissdes de
gases de efeito estufa as principais responsaveis por esse aquecimento (Tollefson,
2025).

2.3.3 Painel Intergovernamental de Mudancas Climaticas — IPCC

O termo ‘mudancas climaticas’ foi popularizado em 1998 pela Organizacéo
Meteoroldgica Mundial (OMM) e pelo Programa das Nacdes Unidas para o Meio
Ambiente (PNUMA), com o apoio da comunidade cientifica e o endosso da
Assembleia Geral da ONU. Outrossim, o Painel Intergovernamental sobre Mudancas
Climéticas (IPCC) foi criado com a missdo de fornecer avaliacbes objetivas e
cientificamente embasadas sobre o conhecimento existente a respeito das mudancas
climaticas. Para isso, o IPCC reune, analisa e sintetiza pesquisas cientificas de todo
o mundo, produzindo relatérios de avaliacdo abrangentes que servem como
referéncias para governos, formuladores de politicas publicas e cientistas na

compreensao desse desafio global.

234 Relatérios de Avaliacdo do IPCC — AR

O Primeiro Relatério de Avaliacdo do IPCC (FAR), lancado em 1990,
estabeleceu as bases cientificas para a compreensdo das mudancas climaticas,
destacando o aumento das concentracdes de gases de efeito estufa (GEE’s) na
atmosfera e a correlagdo com o aquecimento global. O Segundo Relatério (SAR),
publicado em 1995, reforcou a influéncia humana no clima e forneceu subsidios para
o Protocolo de Kyoto, que estabeleceu metas de reducdo de emissdes para paises
desenvolvidos. Ja o Terceiro Relatério (TAR), em 2001, introduziu cenarios futuros e
destacou a necessidade de ac¢des robustas, enquanto o Quarto Relatorio (AR4), em
2007, consolidou a certeza cientifica sobre a influéncia humana no clima, sendo um
dos pilares para o Prémio Nobel da Paz concedido ao IPCC naquele ano.

O Quinto Relatorio (AR5), publicado em 2014, refor¢cou a urgéncia de limitar o
aguecimento global a 2°C acima dos niveis pré-industriais e serviu como base

cientifica para o Acordo de Paris, em 2015. Por fim, o Sexto Relatério (AR6), divulgado
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entre 2021 e 2023, trouxe conclusbes ainda mais alarmantes, afirmando que a
influéncia humana no clima é "inequivoca" e que o0 aquecimento global ja atingiu 1,1°C
acima dos niveis pré-industriais. O relatorio ressaltou a necessidade de cortes
profundos e imediatos nas emissdes para limitar o aquecimento a 1,5°C, evitando os
piores impactos, como eventos climaticos extremos, elevacao do nivel do mar e perda

de biodiversidade (https://www.ipcc.ch/about/history/).

2.3.5 Projeto de Intercomparacao de Modelos Acoplados — CMIP
O objetivo do Coupled Model Intercomparison Project (CMIP) é entender
melhor as mudancas climaticas passadas, presentes e futuras decorrentes da
variabilidade natural, ndo forcada ou em resposta a mudancas na forca radiativa em
um contexto multimodelo. Este entendimento inclui avaliagbes do desempenho dos
modelos durante o periodo histérico e quantificacbes das causas do spread

(dispersédo) em projecdes futuras (https://www.wcrp-climate.org/wgcm-cmip). O grau

de dispersdo nas projecdes climaticas futuras ocorre em algumas regides, devido a
uma combinac¢do de variacdes na sensibilidade climatica que determina a magnitude
da resposta global média, e grandes variacdes nos padrdes espaciais de mudanca —
particularmente para a precipitacdo (McSweeney e Jones, 2016). O projeto CMIP é
realizado em vérias fases, chamadas de fases de modelagem, que ocorrem em
intervalos regulares. Durante cada fase, os centros de modelagem participantes
executam seus modelos climaticos acoplados com base em cenéarios de emissao
especificos, como os cenarios de emissdo do IPCC (https://wcrp-cmip.org/cmip-
overview/).

O CMIP comecou em 1995 sob os auspicios do Working Group on Coupled
Modelling (WGCM). O primeiro conjunto de experimentos comuns envolveu a
comparacao da resposta do modelo a uma forca idealizada - uma taxa constante de
aumento que foi realizada usando um aumento de CO2 de 1% ao ano composto.
Desde entdo, varios experimentos CMIP foram desenvolvidos. Os experimentos
continuam a incluir integracdes usando forcantes idealizadas para facilitar o
entendimento. Eles agora incluem integracbes forcadas com estimativas das
mudancas nas forgantes radiativas histéricas, bem como estimativas das mudancas
futuras.

A primeira fase (CMIP1) ocorreu entre 1995 e 1999 com a premissa de

melhorar a compreenséo do clima global e seus processos por meio da comparagéo
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de modelos climaticos. A segunda fase do (CMIP2) ocorreu entre 1999 e 2004, em
que foram realizadas simula¢cdes abrangentes e aprimoradas de modelos climaticos,
comparando as respostas desses modelos a diferentes forcantes climéticas. Nessas
duas primeiras fases, o CMIP envolveu a operacédo de 18 GCM’'s em duas
configuragdes diferentes: uma “operacédo de controle” sob condigdes pré-industriais
constantes e uma “operacgéao perturbada”, na qual o diéxido de carbono atmosférico
aumentou 1% ao ano durante 80 anos.

Entre 2005 e 2006, o CMIP3 expandiu significativamente os resultados de
dados do projeto, contando com a participacdo de 25 modelos. Esta trajetoria
ascendente continuou com o CMIP5 e o CMIP6, cada um envolvendo mais modelos
e mais experimentos do que seu antecessor. O CMIP6 é a fase mais recente, e
consiste nas “execugdes” de cerca de 100 modelos climaticos, sendo produzidos em
49 grupos de modelagem distintos. Foram produzidos cenérios para diferentes faixas
de emissao de carbono na atmosfera. Os cenarios, ja atualizados, sdo chamados de
SSP1-2.6, SSP2-4.5, SSP4-6.0 e SSP5-8.5. Esses cenarios foram produzidos e
distribuidos através da Earth System Grid Federation, incluindo variaveis sociais,
como o aumento populacional, econdmico e bioecolégico. As execugcdes dos GCM’s
do CMIP6 foram desenvolvidas em apoio ao 6° Relatério de Avaliagdo do IPCC (Painel
Intergovernamental sobre Mudancas Climaticas) (WCRP, 2024).

No contexto do CMIP6, o periodo “historical" refere-se ao intervalo de tempo
de 1850 a 2014, durante o qual os modelos climaticos séo calibrados e validados em
relacdo aos dados observados. Isso permite a avaliacdo da precisdo dos modelos em
reproduzir o clima passado. Além disso, o CMIP6 utiliza cenarios SSP (Shared
Socioeconomic Pathways), que sao projecdes futuras que combinam diferentes
trajetdrias de desenvolvimento socioeconémico com diversos niveis de mitigacao de
gases de efeito estufa (GEE’s). Esses cenarios ajudam a explorar uma ampla gama
de possiveis futuros climaticos, considerando variaveis como crescimento
populacional, desenvolvimento econdémico, avanco tecnoldgico e politicas ambientais,
facilitando a andlise dos impactos e adaptacdes potenciais frente as mudancas
climaticas (IPCC, 2021).

Os resultados dessas simulacées sdo compartilhados e compilados em um
banco de dados central para analise. Os resultados do CMIP sdo amplamente
utilizados na comunidade cientifica para entender as mudancgas climaticas, examinar

a variabilidade climatica, avaliar os impactos das emissdes de gases de efeito estufa
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e informar politicas relacionadas ao clima. Esses dados também sédo usados no
desenvolvimento dos relatorios de avaliagdo do IPCC, fornecendo uma base cientifica

sélida para as conclusdes e recomendacfes apresentadas nos relatérios.

2.3.6 Modelo de Circulacdo Geral - GCM

A previsibilidade atmosférica possui um limite tedrico de aproximadamente
duas semanas, devido a natureza cadtica da atmosfera terrestre. Para superar essa
limitag&o e realizar projecdes climaticas de longo prazo, séo utilizados os Modelos de
Circulacdo Geral (GCM’s). Os GCM’s sdo modelos climaticos que possibilitam o
calculo do movimento atmosférico em escala hemisférica e global (McWilliams, 2019).
Esses modelos sdo compostos por dois componentes principais: um nucleo dindmico,
responsavel por simular o movimento de fluidos em grande escala por meio de
equacdes primitivas, e um modelo fisico, que representa processos climaticos
significativos, como transferéncia radiativa, formacdo de nuvens e conveccéao, além
de incorporar um conjunto de condi¢cbes de contorno (Edwards, 2011; Calvin et al.,
2023).

A histéria de modelos climaticos remonta ao inicio do século XX, por volta de
1904, quando o cientista Vilhelm Bjerknes desenvolveu o "teorema da circulacéo
generalizada". Ele propds que a atmosfera pode ser entendida como um sistema de
circulacdo de massa de ar, impulsionado pela radiacao solar e defletido pela rotacao
da Terra. Ademais, esse sistema era expresso mediante as diferencas locais de
velocidade, densidade, pressao, temperatura e umidade do ar (Gramelsberger, 2010).

Em 1922, Lewis Richardson publicou um sistema numérico para previsdo do
tempo, usando versdes simplificadas das equacdes de Bjerknes. A proposicao do
trabalho consistiu em dividir um territério em uma grade de células, cada uma
contendo dados especificos sobre pressdo do ar, temperatura e outras variaveis
meteoroldgicas (Gleditsch, 2020). Richardson aplicou seu método numérico para
calcular mudancas na pressédo atmosférica e nos ventos em duas localidades da
Europa Central. Entretanto, devido a complexidade dos calculos para a época, 0s
resultados foram incertos e nédo realistas (Costa, 2021).

Somente na década de 1930, matematicos identificaram as falhas no método
numerico usado de Richardson, particularmente em relacdo ao equilibrio entre o
campo de presséo e vento nas condig¢des iniciais do modelo previsor. O matematico

John Von Neumann iniciou o desenvolvimento do Electronic Numerical Integrator and
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Computer (ENIAC) no Instituto de Estudos Avancados de Princeton, nos Estados
Unidos. O ENIAC, concluido ao final da Segunda Guerra Mundial, foi inicialmente
utilizado para célculos complexos relacionados ao desenvolvimento de armas
nucleares. Apos a guerra, von Neumann direcionou o uso do computador para a
previsdo meteoroldgica, retomando as pesquisas de Bjerknes (Balaji, 2015).

Ao final da década de 1940, as primeiras previsdes computadorizadas foram
efetuadas a partir dos estudos de von Neumann em conjunto com o meteorologista
Jule Charney. Eles simplificaram modelos matematicos complexos, permitindo que os
computadores da época realizassem previsoes eficientes. O grupo obteve resultados
realistas, destacando-se um experimento em que modelaram os efeitos de uma
extensa cadeia de montanhas sobre o fluxo de ar em um continente (Weart, 2010).

Os primeiros modelos meteoroldgicos eficientes foram projetados para prever
o clima em um periodo de até trés dias. Em 1956, Norman Phillips realizou a primeira
simulacdo de longo prazo, cobrindo um més. Phillips baseou sua simulacdo em um
fluxo de ar ao longo das linhas de latitude da Terra, introduzindo pequenas
perturbacdes aleatdrias e uma onda com comprimento de 6.000 km. Os resultados
mostraram uma correspondéncia entre as trocas de energia simuladas da onda e os
dados observados na atmosfera real (Phillips, 1956).

A partir dessa contextualizacdo, ao longo das ultimas décadas, os GCMs
evoluiram significativamente, com avancos na capacidade de simulagcédo do sistema
climético global. Entre os modelos mais utilizados, destacam-se o ACCESS
(Australian Community Climate and Earth System Simulator), o CESM2 (Community
Earth System Model, verséo 2), o CMCC (Centro Euro-Mediterraneo sui Cambiamenti
Climatici), o FGOALS (Flexible Global Ocean-Atmosphere-Land System Model), o
MPI-ESM1 (Max Planck Institute Earth System Model, versdao 1) e o GFDL
(Geophysical Fluid Dynamics Laboratory). Cada um desses modelos possui multiplas
versoes e variagcOes, adaptadas para diferentes aplicagdes e melhorias em processos
fisicos.

O ACCESS possui varias versoes, como o ACCESS-CM2 e o ACCESS-
ESML1.5, desenvolvidos pelo Bureau of Meteorology da Australia em colaboragédo com
a CSIRO. O ACCESS-CM2 é focado em simulagfes climaticas, com melhorias na
representacao de processos atmosféricos e oceanicos, enquanto o ACCESS-ESM1.5
inclui um médulo de sistema terrestre para simular o ciclo do carbono (Scoccimarro et
al., 2022).
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O CESM2 é uma evolucao do CESM1, com versées como o CESM2-WACCM
(Whole Atmosphere Community Climate Model) e o CESM2-CAM6 (Community
Atmosphere Model, versdo 6). O CESM2-WACCM inclui a simulagédo da atmosfera
superior, sendo util para estudos de quimica atmosférica e interacdes estratosfera-
troposfera. Ja o CESM2-CAM6 apresenta melhorias na parametrizacdo de nuvens e
aerossois, além de uma representacédo mais precisa do ciclo hidrologico (Danabasoglu
et al., 2020).

O CMCC possui versdes como o CMCC-CM2 e 0o CMCC-ESM2. O CMCC-CM2
é focado em simulacdes climaticas de alta resolucédo, com melhorias na representacao
de processos oceanicos e atmosféricos. O CMCC-ESM2 inclui um médulo de sistema
terrestre para simular interagdes entre o clima e o ciclo do carbono, sendo utilizado
em estudos de impactos climaticos na regido do Mediterraneo (Lovato et al., 2022).

O FGOALS possui versdes como 0 FGOALS-g3 e 0 FGOALS-s3. O FGOALS-
g3 é uma versao de grade grossa, utilizada para simulacdes climaticas de longo prazo,
enquanto o FGOALS-s3 é uma versao espectral com maior resolucdo, adequada para
estudos de variabilidade climatica regional. Ambas as versdes incluem melhorias na
representacdo do acoplamento oceano-atmosfera e na simulacdo de mong¢des (Bao
et al., 2013; Li et al., 2020).

O MPI-ESML1 possui versdes como o MPI-ESM1-2-HR (alta resolucéo) e o MPI-
ESM1-2-LR (baixa resolugdo). O MPI-ESM1-2-HR ¢é utilizado para simulagfes
climaticas de alta resolu¢cdo, com foco em processos regionais, enquanto o MPI-
ESM1-2-LR é mais adequado para simulacdes de longo prazo e estudos de
variabilidade climatica global. Ambas as versdes incluem melhorias na representacao
de processos oceanicos e atmosféricos (Gutjahr et al., 2019).

O GFDL possui versées como o GFDL-ESM4 e o0 GFDL-CM4. O GFDL-ESM4
inclui um maddulo de sistema terrestre para simular o ciclo do carbono e sua interagao
com o clima, enquanto o GFDL-CM4 ¢é focado em simula¢gbes climaticas de alta
resolucdo, com melhorias na representacdo de gelo marinho e aerossois. Essas
versodes tém sido amplamente utilizadas em projecdes climaticas globais e regionais
(Dunne et al., 2020; Held et al., 2019).

2.3.7 Cenarios Climaticos de Modelos Climaticos
Os modelos climéticos do CMIP1 foram forgados com concentragdes de GEE’s

especificas selecionadas para representar um estado de equilibrio préximo as
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condicBes pré-industriais. Jano CMIP2 e CMIP3, foram utilizados cenarios especificos
desenvolvidos pelo IPCC, denominados Special Report on Emissions Scenarios
(SRES), que representam diferentes trajetérias de emissbes de GEE e outros
forcantes climéticos, baseando-se em pressupostos variados de desenvolvimento
humano, tecnologia, populacdo e politicas. Esses cenarios dividlem-se em quatro
familias principais: Al (rapido crescimento econémico com emissdes atingindo o pico
por volta de 2050 e depois diminuindo rapidamente), A2 (desenvolvimento desigual
com aumento continuo das emissdes e falta de cooperacdo global para mitigacdo),
B1 (desenvolvimento sustentavel com reducéo gradual das emissées, resultando em
baixas emissbes de GEE), e B2 (desenvolvimento regionalizado com foco em
sustentabilidade local e conservacdo de recursos, representando um cenario
intermediario entre Al e B1).

Para o CMIP5, os cenérios ndo foram desenvolvidos pelo IPCC, ao invés disso,
o IPCC catalisou o desenvolvimento de novos cenarios pela comunidade cientifica,
com a intencdo de que 0s cenarios e as pesquisas sustentassem o AR5. Desse modo,
foram selecionadas quatro vias de concentracOes representativas (RCP’s), sendo
nomeados, conforme o0s niveis alvos de forcamento radioativos até 2100, os quatro
RCP’s selecionados foram considerados representativos da literatura e incluiram um
cenario de mitigacdo levando a um nivel de forcamento muito baixo (RCP2.6), dois
cenarios de estabilizacdo média (RCP4.5/RCP6.0) e um cenario de emisséao de linha
de base muito alto (RCP8.5). O RCP2.6 é um cenario de mitigacdo que representa
um futuro de baixas emissfes; RCP4.5 e RCP6.0 sdo cenarios intermediarios que
representam um futuro de emissdes moderadas; RPC8.5 representa um futuro com
altas emissdes de GEE, em que as politicas de mitigacdo sdo inexistentes (Van
Vuuren et al., 2011).

As simulacbes do CMIP6 foram baseadas nos cenarios de Caminhos
Socioecondmicos Compartilhados (SSP’s), que consistem em cinco trajetorias
principais, combinadas com os cenarios RCP’s. SSP1 - Sustentabilidade (baixos
desafios para mitigacéo e adaptacdo): o mundo avanga rumo a um desenvolvimento
sustentavel, priorizando inclusdo social e limites ambientais. SSP2 - Caminho
Intermediario (desafios médios para mitigacdo e adaptacdo): segue tendéncias
histéricas sem mudancas significativas. SSP3 - Desigualdade Regional (altos desafios
para mitigacdo e adaptacdo): nacionalismo e conflitos regionais reduzem a

cooperacdo global, com foco em questdes domeésticas. SSP5 - Desenvolvimento
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Movido a Combustiveis Fdsseis (altos desafios para mitigacdo, baixos para
adaptacao): prioriza crescimento econdémico acelerado, inovacdo tecnoldgica e
dependéncia de combustiveis fésseis, com forte integracao global de mercados (Riahi
et al., 2017).

Os cenarios de simulacéo utilizados no CMIP6 combinam os SSP’s (Caminhos
Socioecondmicos Compartilhados) com os RCPs (Cenéarios de Concentracao

Representativa), resultando em quatro trajetdrias principais:

1) SSP1-2.6 (corresponde ao RCP2.6): Um cenario de mitigacdo com reducéo
significativa das emissdes, resultando em baixos niveis de concentracédo de
gases de efeito estufa (GEE) na atmosfera.

2) SSP2-4.5 (corresponde ao RCP4.5): Um cenario em que as emissdes
aumentam, mas sao estabilizadas posteriormente, com concentracbes de
GEE atingindo o pico em meados do século e diminuindo gradualmente.

3) SSP3-7.0 (corresponde ao RCP6.0): Um cenario com emissdes relativamente
altas ao longo do século XXI, resultando em concentracdes atmosféricas de
GEE mais elevadas do que no RCP4.5.

4) SSP5-8.5 (corresponde RCP8.5): Um cenario de altas emissfes, com
aumento rapido e continuo das concentracbes de GEE na atmosfera,

representando um futuro de alto aquecimento global.

Para analisar as mudancas climaticas com preciséo, € necessario adotar um
periodo de referéncia (historical), que serve para caracterizar a sensibilidade da area
de estudo ao clima atual. Segundo o IPCC (1992), esse periodo deve ser
representativo do clima médio recente da regido e ter duracdo suficiente para
abranger uma variedade de variacdes climaticas, incluindo eventos extremos, como
secas severas ou estacoes frias. Essa abordagem permite uma avaliacao robusta das
mudancas climaticas futuras (Calvin et al., 2023).

No ARG, foram apresentadas projecées de mudangas de longo prazo para
diversas variaveis climaticas, como a precipitacdo, em relacdo ao periodo de
referéncia (1995-2014). Essas projecdes foram representadas em mapas por meio de
cores e hachuras (Figura 6). As cores indicam regiées com alta relacdo sinal-ruido,
onde h& uma resposta robusta e consistente entre a maioria dos modelos climéaticos,
tornando as projecdes mais confiaveis, tanto na direcao (sinal) quanto na magnitude

das mudancas. Ja as hachuras destacam areas com baixa relacdo sinal-ruido, onde
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h& maior incerteza, pois os modelos podem divergir na direcdo ou na intensidade das
mudancas, refletindo a complexidade e a variabilidade natural do clima. A selecéo
estratégica de GCM'’s para estudos de impacto climético é, portanto, um elemento
crucial do desenho experimental, considerando também o desempenho dos modelos
(McSweeney e Jones, 2016).

a) referéncia: historical (1995-2014) (b) SSP1-2.6
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Figura 6: Mudancas projetadas de longo prazo (2081-2100) na sazonalidade da
precipitacdo em média entre os modelos CMIP6 disponiveis (numero fornecido no
canto superior direito de cada painel) no cenario SSP1-2.6 (b), SSP2-4.5 (c) e SSP5-
8.5 (d), respectivamente. A climatologia simulada de 1995-2014 é mostrada no
painel (a).

Fonte: Adaptado de AR6

2.4  MODELOS HIDROLOGICOS

Um modelo hidrologico é utilizado para se antecipar aos eventos, por exemplo,
avaliando o impacto da urbanizacdo em uma bacia hidrogréafica, previsdo de
enchentes, impacto da altera¢éo do curso de um rio, bem como, ocorréncia de eventos
extremos estatisticamente possiveis (Tucci, 2005). Yevjevich (1993), ao fazer uma
analise das contribuicbes para a hidrologia no século passado, revelou dois tipos
basicos de desenvolvimento. Primeiro, o autor observou o que chamou de “hidrologia
utilitaria” (também chamada Hidrologia Aplicada ou Hidrologia Técnica), € o

surgimento mais recente do que chamou de Hidrologia Tedrica (também chamada
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Hidrologia Basica, Cientifica, Analitico-matematica), como sendo os dois polos de todo
0 espectro hidrolégico de atividades e abordagens. O outro tipo de desenvolvimento
€ a divisdo de investigacBes hidrolégicas em Hidrologia Fisica (deterministica) e
Hidrologia Estatistica (estocastica).

Singh (1995) argumenta que os modelos hidrolégicos possuem cinco
componentes: geometria do sistema (bacia hidrogréafica), entrada, leis governantes,
condigbes de contorno e saida. Esses elementos sdo combinados de diferentes
formas, dependendo do tipo de modelo, permitindo classifica-los como concentrados
ou distribuidos, assim como, deterministicos ou estocasticos ou mistos.

Um modelo concentrado € representado por equacdes que desconsideram a
variabilidade espacial de processos, entradas, condi¢des de contorno e caracteristicas
geométricas do sistema (como bacias hidrogréficas). Esses modelos combinam
equacles diferenciais baseadas em leis hidraulicas simplificadas com equacfes
algébricas empiricas. Exemplos de métodos empiricos incluem o SCS-CN (Soil
Conservation Service Curve Number, 1954), o SWMM (Storm Water Management
Model, 2005) e o HEC-HAS (Hydrologic Engineering Center — Hydraulic Analysis
System, 1995). Ja os modelos distribuidos consideram explicitamente a variabilidade
espacial desses elementos (Singh, 1995). Contudo, a auséncia de dados de campo
frequentemente limita o desenvolvimento de modelos distribuidos completos. Tucci
(2005) destaca que nao existem modelos totalmente distribuidos, ja que a
discretizacdo numérica introduz caracteristicas de modelos concentrados em
subdivisbes menores. Exemplos de modelos distribuidos incluem SHE (Systeme
Hydrologique Europeen, 1986) e WATFLOOD (Kouwen, 2000; Kouwen et al., 1993).

Em conformidade, modelos deterministicos ignoram a probabilidade, operando
com leis definidas. Segundo Dooge (1973), um sistema é deterministico quando, para
a mesma entrada, sempre € produzida a mesma saida. Em contraste, um modelo
estocastico é aquele que incorpora a probabilidade e considera a chance de
ocorréncia das variaveis envolvidas no processo (Chow, 1964), isto €, apresenta uma
relacdo estatistica entre entrada e saida, sendo dependente de condi¢cdes iniciais
idénticas (Tucci, 2005). Singh (1995) destaca que a maioria dos modelos é
determinista, com raros casos de modelos completamente estocasticos. Muitos
combinam elementos probabilisticos e deterministicos, podendo ser caracterizados

como semi-deterministicos ou semi-estocasticos. Modelos estocasticos tém como
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vantagem fornecer aos tomadores de decisdo uma estimativa das incertezas nas

previsdes (Daniel, 2011).

2.5 MODELO CHUVA-VAZAO

Ha uma evidente busca por um modelo que represente de maneira satisfatoria
os fendmenos chuva-vazdo, mas que também o faca a partir do menor nimero de
parametros. Ao longo da histéria, houve cerca de 280 modelos chuva-vazéo, além de
pequenas modificagbes dos modelos oriundos destes modelos (Peel e McMahon,
2020). A superabundancia de modelos chuva-vazao, conforme destacado por Clark et
al. (2011), evidencia uma insuficiente compreenséao cientifica da dinamica ambiental
do ciclo hidrologico. Essa lacuna pode ser atribuida as dificuldades inerentes a
medicao e representacdo da heterogeneidade presente nos sistemas naturais, que
sao intrinsecamente complexos e variaveis, de regido para regiao.

Além disso, Saavedra et al. (2022) falam que é preciso identificar as prioridades
da modelagem e as limitagbes da disponibilidade de dados, tempo e orgamento para
modelos ajudarem a restringir as escolhas e garantir que o modelo seja o melhor para
o proposito pretendido. Os modelos chuva-vazao, por representarem processos
hidrolégicos, podem ser classificados: quanto aos tipos de dados abordados, sejam
eles deterministicos ou estocasticos; quanto a estrutura modelos empiricos,
conceituais ou fisicos; quanto a variabilidade espacial, modelos concentrados,
distribuidos e semi-distribuidos.

Para Melsen et al. (2016), a escolha da estrutura do modelo representa o
principal desafio na modelagem chuva-vazdo. Os modelos empiricos, de estrutura
mais simples, baseiam-se em relacdes diretas entre entrada e saida, caracterizando
uma abordagem de modelagem caixa-preta, que néo considera explicitamente o0s
processos internos do sistema. JA 0s modelos conceituais utilizam equacdes
simplificadas para representar o armazenamento de agua na bacia hidrografica,
analisando parcialmente os fluxos hidricos por meio de compartimentos
interconectados, o que configura uma modelagem caixa-cinza. Por fim, os modelos
fisicos, ou caixa-branca, empregam leis e equacdes fisicas baseadas em respostas
hidrolégicas reais, exigindo uma compreensédo detalhada dos processos envolvidos.
Cada tipo de estrutura apresenta vantagens e desvantagens, dependendo da
finalidade do modelo e do nivel de detalhamento desejado (Beven, 2011; Peel e
McMahon, 2020).
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Segundo Pechlivanidis et al. (2013), a calibracdo dos parametros de qualquer
modelo serd baseada na qualidade do monitoramento e, portanto, os dados de
entrada sédo importantes. Neste sentido, o aspecto mais desafiador da validacao de
modelos com dados observados estd contido em saber até onde os modelos séo
confiaveis e o quao bem podem representar o sistema abordado (Andréassian et al.,
2004; Fekete et al., 2002). Portanto, os modelos chuva-vazéo trazem um conjunto de
beneficios para a hidrologia, visto que sdo adaptaveis a heterogeneidade de cada
bacia, demandam poucos dados e sao tolerantes a possiveis falhas (Devia et al.,
2015).

251 Método Racional

A primeira descricdo formal de um modelo chuva-vazéo foi proposta por
Mulvaney (1851), um marco na hidrologia que estabeleceu as bases para a
modelagem hidroldgica. Esse método calcula a vazao maxima (Qmax) de pequenas
bacias hidrogréaficas com base na Equagéo 1.

Quax = C.LA 1)

Em que C é o coeficiente de escoamento superficial (adimensional), que
representa a fragdo da precipitacdo que contribui para o escoamento, considerando
perdas como infiltracdo e evapotranspiracao; | € intensidade maxima de precipitacao
(em mm/h) correspondente ao evento; e A é a area da bacia hidrografica (em hectares
ou km2).

O método racional foi pioneiro por sua simplicidade e aplicabilidade pratica,
especialmente em projetos de drenagem urbana e no dimensionamento de estruturas
hidraulicas. No entanto, suas limitacdes sdo evidentes: ele é mais adequado para
bacias pequenas e homogéneas, onde o tempo de concentracdo é relativamente
curto, e ndo considera a variabilidade temporal e espacial da precipitacdo ou a

complexidade dos processos hidroldgicos.

2.5.2 Hidrograma Unitario
Outro modelo matematico, que inspirou diversas outras modificacdes, € o
hidrograma unitario de Sherman (1932), que utiliza a chuva efetiva unitaria de 1mm,
com intensidade constante no tempo e uniformemente distribuida no espago e sobre

a bacia hidrogréfica (Figura 7).



37

16
14
12

10

Q (m%/s)

Tempo (h)

Figura 7: Hidrograma unitario triangular

Considerando a bacia hidrografica como um sistema linear e invariante no
tempo, € possivel aplicar os principios da proporcionalidade e da superposicdo. O
principio da proporcionalidade estabelece que o hidrograma resultante de uma chuva
efetiva com determinada duracdo € diretamente proporcional a sua intensidade.
Portanto, € possivel calcular a resposta da bacia hidrografica a eventos de chuvas
diferentes, pois a resposta é uma soma das respostas individuais (superposicéo). Se
o sistema ¢€ linear e invariante (bacia hidrografica), as vazdes y(t) sdo representadas
pela convolucao entre a chuva x(t) e a funcdo de transferéncia ou a funcao da resposta
impulsional, h(u), dada pela Equacéo 2.

y(t) = [y h(Wx(t — wdu @)

Outros modelos que descrevem a relacdo chuva-vazao tém sido amplamente
discutidos na literatura desde que Sherman (1932) introduziu o conceito do
hidrograma unitario. Entre as contribuices, destacam-se os trabalhos de (Rodriguez,
1967), Papazafiriou (1976), Goring (1984), Labat et al. (2000) e Blanco et al. (2005).
Nesses modelos, as hipoteses de linearidade e invariancia no tempo (Equagéo 2), sédo
justificadas pelas pequenas dimensdes das bacias analisadas. Entdo, aplica-se a
convolucdo aos dados de entrada x(t) e a resposta impulsional do sistema h(t),
resultando nos dados de saida y(t). No contexto dos sistemas hidrolégicos, a entrada
é representada pela precipitacdo P (mm) e a saida pela vazdo Q (m?3/s), que &
expressa pela forma discreta da integral de convolucdo, conforme a Equacgéao 3.

Qi =Xjsi hiPi_jiq, comi=123.n+m+1 3)
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onde m é o comprimento da memoaria do sistema que representa o efeito de

uma chuva continua que se estende por m intervalos de duracéo T.

2.6 REDES NEURAIS ARTIFICIAIS

Nesta Secdo sdo discutidos os conceitos basicos sobre neurénio bioldgico e
artificial, o funcionamento das redes neurais, incluindo as fases de treinamento e
ativacdo. Ademais, a descricdo de redes do tipo Autorregressiva N&o Linear com
Entradas Exdgenas (NARX) é apresentada.

2.6.1 Breve Historico

As primeiras pesquisas para o desenvolvimento de computadores baseados no
comportamento no cérebro humano datam de 1943, quando McCulloch e Pitts
publicaram o primeiro estudo descrevendo as redes neurais, unificando os estudos de
neurofisiologia e l6gica matematica e apresentaram um modelo matematico baseado
nos neurénios biolégicos (McCulloch & Pitts, 1943).

Em 1949, a publicagdo do livro The Organization of Behavior de Hebb
representou um marco importante para o estudo das redes neurais. Nele, Hebb
introduziu pela primeira vez uma regra de aprendizagem para a modificacao sinaptica
em neurbnios bioldgicos. Segundo Hebb (1949), a conectividade cerebral é
continuamente ajustada a medida que um organismo aprende tarefas funcionais. Ele
propds que a eficiéncia de uma sinapse entre dois neurénios aumenta com a ativacao
simultanea desses neurdnios, e quanto maior a correlacéo entre suas atividades, mais
forte se torna a conexao entre eles (Haykin, 2009). Essa ideia, conhecida como Lei de
Hebb, tornou-se fundamental para a compreensdo dos mecanismos de aprendizagem
aplicadas as RNAs, permitindo a adaptacdo e o aprimoramento continuo desses
sistemas (Yadav et al., 2015).

O primeiro modelo computacionalmente pratico, conhecido como Perceptron,
foi introduzido por Rosenblatt (1958). Ele representa a forma mais simples de uma
rede neural artificial, composta por um Unico neurdnio artificial capaz de realizar
tarefas basicas de classificacdo. O Perceptron combina o modelo tedrico de
McCulloch e Pitts (1943) com as percepg¢des biologicas, resultando na primeira rede
neural artificial projetada para classificar padrées linearmente separaveis por meio de

aprendizagem supervisionada.
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Em 1969, surgiu o livro dos pesquisadores Minsky e Papert criticando o
perceptron, demonstrando matematicamente que o0s perceptrons de uma Unica
camada tinham limitagbes fundamentais. Isso resultou em um declinio no interesse
por redes neurais artificiais (Arbib, 1969). Apenas na década de 80 as redes neurais
ressurgiram com o modelo de rede perceptron de multiplas camadas. Esse novo
modelo utiliza um algoritmo chamado backpropagation (ou retropropagacéo), com
aprendizagem supervisionada, que resolveu em grande parte 0s problemas
levantados por Minsky e Papert (1969). (Rumelhart et al., 1986) foram responsaveis
por avancos significativos, demonstrando a eficacia do backpropagation para resolver

problemas de aprendizagem e popularizando seu uso em redes neurais.

2.6.2 Conceitos Bésicos

As Redes Neurais Artificiais (RNAs) fazem parte do conjunto de técnicas de
aprendizado de maquina (AM), uma subcategoria da inteligéncia artificial (1A), uma
forma de estatistica aplicada. As RNA’s sdo sistemas paralelos distribuidos,
compostos por neurbnios ou unidades de processamento, que computam
determinadas funcdes mateméaticas (normalmente néo-lineares). Tais neurdnios de
processamento podem ser distribuidos em uma ou mais camadas e interligados por
um grande numero de conexdes (pesos sinapticos), 0s quais armazenam o
conhecimento representado no modelo e servem para ponderar a entrada recebida
por cada neurdnio da rede (Haykin, 2009).

O cérebro humano possui cerca de 100 bilhdes de neurdnios biolégicos, sua
célula fundamental. Cada um destes neurdnios processa e se comunica com milhares
de outros continuamente e em paralelo (Braga et al., 2000). Os neurdnios possuem
um papel essencial na determinacdo do funcionamento e comportamento do corpo
humano, os quais sdo divididos em trés secdes: o corpo da célula; os dendritos, que
(terminais de entrada) e; pelos ax6nios (terminais de saida). As entradas séo formadas
através das conexdes sinapticas que conectam os dendritos aos axdnios de outras
células nervosas. Os sinais que chegam por estes axdnios sdo pulsos elétricos
conhecidos como impulsos nervosos e constituem a informacdo que o neurbnio
processa para produzir como saida um impulso nervoso no seu axbnio (Kovacs,
2002).

O modelo de neurdnio artificial proposto por McCulloch e Pitts (1943), interpreta

o funcionamento do neurdnio biolégico como um circuito binario simples que combina
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varias entradas e apenas um sinal de saida. Sua descricdo matematica resultou em
um modelo com n terminais de entrada representando os dendritos, e apenas uma
saida simulando o axénio.

Nesse contexto, o algoritmo de RNAs opera por meio de nds interconectados,
onde cada n6 funciona como um neurénio artificial capaz de processar e transmitir
sinais de entrada. Esses sinais sdo multiplicados por pesos sinapticos wkn, que
refletem a importéancia relativa de cada entrada xi, e somados a um parametro bias bk.
O resultado dessa soma é processado por uma funcéo de ativacao f(a), que determina

a saida yn. Um neuronio tipico € representado pela Figura 8.

Entradas Pesos

x1 wk1 Neurdnio Artificial

X2 wk2
Saida
X3 wk3 yn
L]
- -
- L]
L]
wkn )
xn bk \ ‘
) F 50 d Fungdo de
Bias uncao de Ativacdo

Soma

Figura 8: Representacdo esquematica do modelo mateméatico de um neurénio
artificial
Fonte: Ali e Shahbaz (2020)

As diversas arquiteturas de redes neurais podem ser formadas pela
combinacdo de neurdnios artificiais e sdo definidas pelo tipo de conexdo entre as
redes. Cada neurdnio transfere o seu sinal apenas para 0s neurdnios que se
encontram em uma das camadas subsequentes. Haykin (2009) relata trés tipos de
camadas:

- Camada de entrada: onde os padrdes sao apresentados a rede.



41

- Camadas ocultas (ou intermediarias): trabalham como um
reconhecedor de caracteristicas que ficam armazenadas nos pesos
sinapticos e sao responsaveis pela maior parte do processamento e nédo
tem ligag&o direta com o usuério externo.

- Camada de saida: onde os sinais de saida da rede sdo apresentados.

As RNAs também sdo conhecidas como modelos caixa-preta, que podem
aproximar a saida ajustando de forma inteligente seus parametros internos. Dessa
forma, a relacéo entre entrada e saida € parametrizada no projeto estrutural do modelo
e a RNA pode fazer uma previsdo de saida com base em novas entradas nao
conhecidas (Abdulkadir et al., 2013).

2.6.3 Perceptron de Multiplas Camadas

A arquitetura classica, conhecida como Perceptron de Multiplas Camadas
(MLP, do inglés Multilayer Perceptron) surgiu como alternativa para modelar relagdes
ndo-lineares complexas, através do seu treinamento supervisionado usando o
algoritmo de retropropagacao de erro. Bem como, a partir do uso de funcdes de
ativacdo nao-lineares, como a funcao sigmoide (Hornik et al., 1989).

Isto é, os sinais de entrada sdo propagados camada por camada, até que o
vetor de saida seja obtido na ultima camada. O processo de aprendizado termina
quando o erro desejado é atingido ou quando se atinge um nimero maximo de épocas
de aprendizado (Haykin, 2009).

Uma das principais limitacbes do MLP é a necessidade de definir
heuristicamente o nimero de camadas ocultas e de neurbnios em cada camada, o
gue pode resultar em estruturas hiperparametrizadas e computacionalmente custosas
(Zhang e Morris, 1998).

2.6.4 Redes Neurais Profundas e Convolucionais
As DNNs (Redes Neurais Profundas) séo redes neurais com multiplas camadas
ocultas entre a entrada e a saida. Elas sdo capazes de aprender representactes
hierarquicas dos dados, onde cada camada extrai caracteristicas cada vez mais
abstratas e complexas (Grunig et al., 2021).
As CNNs (Redes Neurais Convolucionais) sdo especializadas em processar
dados com estrutura de grade, como imagens. Elas utilizam operacdes de convolucao

para extrair caracteristicas locais (como bordas, texturas e padrées) e pooling para
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reduzir a dimensionalidade dos dados, preservando as informacfes mais importantes
(Kattenborn et al., 2021). Entretanto, as CNN’s e DNN’s tém dificuldades com as
informagdes temporais nos dados de entrada, que precisem de informagbes

sequenciais.

2.6.5 Redes Neurais Recorrentes

Para uma rede neural ser considerada dindmica € necessario possuir memoria
(Elman, 1990). Existem duas maneiras de fornecer memaéria a uma rede neural. A
primeira forma é utilizar atraso no tempo, tais como as técnicas de Time Delay Neural
Network (TDNN) e Finite Impulse Response Multilayer Perceptron (FIRMLP). A
segunda forma, consiste na utilizagcdo de redes neurais recorrentes, tais como
Backpropagation Through Time (ou retropropagacéo ao longo do tempo) (Braga et al.,
2000). Neste contexto, o estudo adota as RNN’s como ferramenta principal para
explorar padrdes dinamicos e dependéncias temporais nos dados, o que as torna
adequadas para tarefas como previsao.

Redes recorrentes sao definidas como aquelas que possuem conexdes de
realimentacdo que proporcionam um comportamento dinamico (Figura 9).
Diferentemente da arquitetura classica, como MLP ou redes neurais profundas (DNN),
as Redes Neurais Recorrentes (RNN) sédo projetadas para processar dados com
estrutura temporal ou sequencial (Waqgas e Humphries, 2024; Yu et al., 2022), como
séries temporais, texto, audio e video (Yu, Antonio e Villalba-Mora, 2022), incluindo a
modelagem hidrolégica (Guzman et al.,, 2017; Mendonca et al., 2021; Menezes e
Barreto, 2008; Wang e Chen, 2022).
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Camada de Camada de
Entrada Camada Oculta Saida

Figura 9: Arquitetura de uma RNN, com multiplas camadas ocultas (i.e., aprendizado
profundo)
Fonte: Wagas e Humphries (2024)

2.6.6 Rede Recorrente NARX

A abordagem Autorregressiva Nao Linear com Entradas Exégenas (NARX) é
uma arquitetura da rede recorrente, que possuem conexdes de realimentagéo do valor
resultante do neurbnio de saida diretamente para a camada de entrada. Bem como
encontrado em outras RNAs, as NARXs também s&o divididas em camadas de
entrada, oculta e de saida (Wang e Chen, 2022). Assim, a rede recorrente NARX
(RNN-NARX) é baseada no modelo linear autorregressivo, que € comumente utilizado
na modelagem de séries temporais (Izady et al., 2013). Além disso, a mesma tem
melhor habilidade de generalizacdo que outras arquiteturas recorrentes (Lin, Horne e
Giles, 1998).

Dois modos de operacdo na RNN-NARX s&o importantes e uteis na
modelagem. Primeiro, no modo Open Loop, os valores observados (target) sdo
implementados manualmente na camada de entrada de uma feedforward padréo.
Segundo, no modo Closed Loop, é possivel considerar o valor estimado de saida do
modelo (output), realimentando diretamente na camada de entrada (Menezes e

Barreto, 2008), como pode ser observado na Figura 10.
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Figura 10: Modo de operacdo NARX Open Loop (a) e; Closed Loop (b)
Fonte: Mendonga (2022)

Debastiani, Silva e Neto (2016) simularam as vazdes diarias em uma sub-bacia
hidrogréfica do rio Canoas, Estado de Santa Catarina, Brasil, elaborando uma rede
recorrente NARX. A bacia possui 1.980 km?2, estd bem preservada em termos
ambientais e é considerada importante zona de recarga do Aquifero Guarani. Foram
utilizadas a precipitacdo e evapotranspiracdo de quatro estacdes meteoroldgicas,
duas inseridas na bacia e duas préximas. ApGs o treinamento em série-paralelo, o
modelo foi convertido para paralelo, a fim de simular um ano de vazdes diarias. Os
autores exaltaram o potencial da arquitetura, alcancando resultados significativos.

Mendonca et al. (2021) aplicaram a NARX em uma sub-bacia do rio Guam4, no
Estado do Para, Brasil, que apresenta area de contribuicdo de 5.032 km2. A area de
estudo é marcada pela agropecuaria e presenca de comunidades tradicionais. Foram
utilizadas precipitacdes diarias de quatro estacdes pluviométricas em torno da bacia,
para simular vazdes diarias. Os resultados mostraram um coeficiente de determinacgéo
de 0,99 e baixos erros de simulagdo. Os autores destacaram, conceitualmente, a
relacdo entre o potencial autorregressivo, que é favorecido em bacias planas, e que,

consequentemente, favorece a infiltracdo de aguas pluviais.
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2.6.7 Funcao de Ativacao

A funcéo de ativacao f(a), componente de um neurdnio artificial, € responsavel
por determinar a saida de cada neurénio com base em sua entrada ponderada a, onde
a = ),; wk;x; + bk (wki séo os pesos, xi sdo as entradas e bk é o bias). A fungéo f(a)
transforma a entrada ponderada em uma saida que sera propagada para 0s neurbnios
subsequentes. A escolha da funcéo de ativacdo tem um impacto direto na capacidade
da rede neural de aprender os padrbes dos dados de entrada (Abu Yazid et al., 2018).
A funcéo de ativagdo degrau, também conhecida como hard-limiter € uma das fungées
de ativacdo mais simples e antigas utilizadas em redes neurais (Equacao 4). Essa
funcd@o produz uma saida binaria, onde o neurdnio "dispara" (saida 1) se a entrada
ponderada ultrapassa um determinado limiar, caso contrario, a saida é 0. A funcéo
degrau foi amplamente utilizada em modelos pioneiros, como 0 perceptron de
Rosenblatt, mas sua natureza discreta e ndo diferenciavel limita sua aplicagdo em
redes neurais modernas, que dependem de gradientes para o treinamento via

Backpropagation (Rosenblatt, 1958).
f(a)={l se a=0 @)

0 se a<o0

Outrossim, a funcéo f(a) pode ser linear ou nao linear, e sua definicdo determina
como o neurdnio responde aos estimulos de entrada. Quando f(a) € uma funcao linear
(também conhecida como purelin), a saida do neurdnio é diretamente proporcional a
sua entrada ponderada (Equacdo 5). Esta funcdo geralmente esta associada a
camada de saida das RNAs, pois podem assumir qualquer valor, tanto positivos
quanto negativos (Haykin, 2009).

f(a)=a (5)

Quando f(a) ndo € uma funcéo linear, como € o caso da funcéo de ativacao log-
sigmoide (logsig), f(a) mapeia a entrada a para um valor no intervalo (0,1), sendo
amplamente utilizada em problemas de classificacdo binaria (Ghose et al., 2018),
conforme a Equacéo 6.

1

f(a)=
(@ 1+e®

(6)

A funcéo tangente hiperbdlica (tanh) é similar & sigmoid, mas mapeia a entrada
para o intervalo de -1 a 1 (Equacéo 7), o que pode acelerar a convergéncia em alguns
casos (Ghose et al., 2018).
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e -1
f(a)= 7
(a) 1 (7)
2.6.8 Treinamento: Algoritmo de Retropropagacao do Erro

O processo de treinamento de RNAs consiste em ajustar 0s pesos sinapticos
das RNAs, de tal modo que as entradas xn convirjam para o valor mais proximo a
saida desejada yn, ou seja, com o menor erro possivel. De modo geral, estes
algoritmos podem ser classificados em treinamentos nao supervisionados,
aprendizado por reforco e supervisionados (Haykin, 2009; Yadav et al., 2015).

O algoritmo de retropropagacédo (em inglés, backpropagation) Levenberg-
Marquardt € um algoritmo de aprendizado supervisionado, baseado no processo de
aprendizado por correcdo de erros (Farber, 2011). Neste algoritmo, que opera em
funcdo do erro quadréatico médio (MSE), os pesos sao modificados através da matriz
Hessiana aproximada, oriunda da matriz Jacobiana transposta (Sahoo e Jha, 2013),

conforme expresso na Equacéo 8.
-1
W(k+1)zwk—(J|IJk+yl) J.& (8)

Onde wi € o peso sinaptico, JI ., representando a matriz Hessiana aproximada,
ek € o erro quadrético associado a cada iteracdo, Jk € a matriz Jacobiana, | € a matriz

identidade e u é a constante de aprendizado.

2.7 TRANSFORMACOES ESTATISTICAS

As transformacdes estatisticas tentam encontrar uma funcao h que mapeia uma
variavel modelada (Xmod) de modo que sua nova distribuicdo seja igual a distribuicdo
da variavel observada (Xo0). Segundo Piani et al. (2010), essa transformacéo pode,
em geral, ser expressa pela Equagéo 9.

Xo = h(Ximoa) 9)

As transformacdes estatisticas sdo uma aplicacdo da transformacéo integral de
probabilidade (Angus, 1994) e se a distribuicdo da variavel de interesse for conhecida,
a transformacéo € definida pela Equagéo 10.

Xo = F5 ' (Froa(Xmoa)) (10)

Onde Fmod € a CDF de Xmod €; Fo™" a inversa da CDF (ou a funcao quantil) de
Xo. A Figura 11 ilustra transformacdes estatisticas para saida modelada usando
precipitacdo diaria observada. A esquerda tem-se o gréafico quantil-quantil da
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precipitacdo observada e simulada, bem como o melhor ajuste de uma funcgéo
arbitraria h que é usada para aproximar a transformacdo. A direita tem-se o CDF
empirico correspondente de valores observados e simulados, bem como os valores
simulados transformados. O desafio pratico € encontrar uma aproximacao adequada

para h e diferentes abordagens sao sugeridas nos subtdpicos a seguir.

=3 data =3 Pq
) I%‘* - h(Py)
= =
E 21 E 3
o o
o ; . : (=l : : .
0 50 100 0.0 0.5 1.0
Pm [mm day '] empirical probability

Figura 11: Esquerda: grafico quantil-quantil da precipitacdo observada (Po) e
projetada (Pm), bem como uma transformacéo (Po = h(Pm)) que € usada para
mapear 0os quantis projetados nos observados. Direita: CDF empirica da precipitacao
observada, projetada e transformada (h(Pm)).

Fonte: Gudmundsson et al. (2012)

2.7.1 Transformac6es derivadas de distribuicao

As distribuicBes estatisticas podem ser usadas para resolver a Equacéo 10.
Esse método estima os quantis da distribuicdo de probabilidade dos dados, que sdo
valores que dividem os dados em intervalos com probabilidades iguais. Por exempilo,
o quantil 0,9 indica que 90% dos dados estdo abaixo dele. A distribuicdo estatistica
descreve a probabilidade de ocorréncia dos valores em um conjunto de dados (ex.,
distribuicdo exponencial, Gama, Weibull, etc.). Esta abordagem j& foi amplamente
aplicada para ajustar variaveis modeladas (Li et al.,, 2010; Piani et al., 2010;
Teutschbein e Seibert, 2012). A maioria desses estudos assume que F € uma mistura
da distribuicdo de Bernoulli e Gama, onde a distribuicdo de Bernoulli € usada para
modelar a probabilidade de ocorréncia e a distribuicdo Gamma € usada para modelar

intensidades de variaveis (Cannon, 2012).

2.7.2 Transformacfes paramétricas
A relagdo quantil-quantil (vide Figura 11) pode ser modelada diretamente
usando transformacdes paramétricas. Assim, a adequacdo das seguintes

transformacdes paramétricas podem ser expressam da Equagéo 11 a Equacgéo 15.
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Xo = b(Froa) (11)
X, =a+ bF,,, (12)
Xy = bF0a° (13)
Xo = b(Finoa — X)° (14)
X, = (a+bF,,3) (1 — e_w) (15)

Onde, X, indica a melhor estimativa de Xo; a, b, ¢, x e t s&o parametros livres
gue estao sujeitos a calibracéo. A escala simples (Equacédo 11) é regularmente usada
para ajustar a precipitacao projetada por modelos do CMIP (Maraun et al., 2010). As
transformacdes da Equacao 12 para a Equacao 15 foram todas usadas por Piani et
al. (2010) para corrigir a precipitacao, para dias umidos (Xo > 0) minimizando a soma
residual dos quadrados. Os valores modelados correspondentes a parte seca da CDF

empirica observada foram definidos como zero em seu estudo.

2.7.3 Transformacfes ndo-paramétricas
2.7.3.1 Suavizacéo de splines (SSPLIN)

A transformacao (Equacéo 9) também pode ser modelada usando regressao
ndo paramétrica mediante splines de suavizagao cubica (Hastie et al., 2001). A spline
de suavizacdo € ajustada apenas a fracdo da CDF correspondente aos dias
observados e valores modelados acima de zero. Isso impde uma restricdo ao método,
como é o caso da precipitacao diaria, que frequentemente apresentam lacuna (dias
sem chuva) ou valores zerados na série temporal. O parametro de suavizacdo da
spline é identificado por meio de validacao cruzada generalizada. A validacdo cruzada
generalizada € uma técnica robusta para selecionar parametros de modelos, evitando

0 overfitting.

2.7.3.2 Empirical Quantile Mapping (EQM)

Uma abordagem comum para resolver a Equacdo 10 é o método dos quantis,
gue se baseia na utilizacao de quantis da distribuicdo de probabilidade para alinha-las
a distribuicéo das observacoes, proporcionando uma solucao flexivel para as variaveis
hidroclimatologicas. Assim, utiliza-se a CDF empirica de valores observados e
modelados em vez de assumir distribuicbes paramétricas (Reichle e Koster, 2004;
Themel3l et al., 2012). Seguindo o procedimento de Boé et al. (2007), as CDF’s

empiricas sdo aproximadas usando quantis empiricos. Valores entre os quantis sé&o
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aproximados usando interpolacéo linear. A eficacia desse método varia conforme o
contexto. Usman et al. (2022), por exemplo, aplicaram o EQM para corrigir
precipitacdo e temperatura diarios em projecdes climéticas na Bacia do Rio Chitral, no
Paquistdo. Ao usar esses dados corrigidos em um modelo hidrolégico, os resultados
mostraram que o método nao trouxe melhorias significativas nas simulacdes de vazao,
tanto para regimes médios quanto extremos. Por outro lado, no estudo de Bum Kim et
al. (2021), no qual diferentes métodos de corre¢cdo foram testados em curvas de
duracdo de vazao, destaca-se a aplicacdo do EQM para reduzir os erros sistematicos
da simulacao e ajustar a variabilidade para valores mais préximos dos observados.
Isso sugere que as vantagens no uso do EQM, depende das variaveis e objetivos do
estudo.

Com base no descrito nesta secao, a escolha de um desses métodos depende
das caracteristicas dos dados, escala temporal e do contexto de aplicacdo da

transformacao estatistica (Gudmundsson et al., 2012; Themel3l et al., 2012).

2.8  ANALISE DE TENDENCIA

A compreensdo da variabilidade e tendéncias climaticas permite identificar
padrées temporais em séries histéricas de dados, como temperatura, precipitacao,
umidade do solo e vazédo de rios. Essa abordagem contribui para a avaliagdo de
mudancas no clima e na disponibilidade hidrica (Marengo et al., 2018). O interesse
pela andlise de tendéncias em variaveis climaticas e hidrologicas intensificou-se a
partir da segunda metade do século XX, impulsionado por estudos como os do Painel
Intergovernamental sobre Mudancas Climéticas (IPCC), que evidenciaram o
aguecimento global e seus impactos (IPCC, 2021). Para identificar padrbes temporais,
métodos estatisticos robustos tém sido amplamente empregados.

Os testes estatisticos podem ser classificados em paramétricos e nao
paramétricos (Naghettini e Pinto, 2007). Os testes paramétricos se baseiam na
hipotese de que os dados amostrais foram obtidos a partir de uma populacéo cuja
distribuicdo seja conhecida ou previamente especificada. Ja o0s testes néo-
paramétricos ndo necessitam da especificagdo do modelo distributivo da populacéo,
pois sdo formulados com base nas caracteristicas da amostra. A utilizacdo de testes
paramétricos e nao-paramétricos depende das caracteristicas dos dados (Xu et al.,
2003).
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2.8.1 Média Mével e Mediana Movel

A média e a mediana sdo medidas de tendéncia central (Walpole et al., 2016).
Porém, a média movel € um indicador estatistico que calcula a média dos valores
dentro de uma janela deslizante ao longo do tempo. Esse método reduz a volatilidade
dos dados e facilita a identificacdo de tendéncias. Matematicamente, a média movel
simples (MMS) é dada pela Equacdo 16, considerando uma amostra com oS
elementos xi+xz+:--+Xn, Sendo n o tamanho da amostra.

MMS, = % i=t-n+1%i (16)

Onde MMS: é a média mével no instante t; xi s&o os valores individuais da série
temporal; e n é o tamanho da amostra. Existem também variacdes como a média
moével ponderada, que atribui pesos diferentes para cada dado dentro da janela
amostral. Diferentemente da média, a mediana mével € uma alternativa a média
movel, sendo especialmente Gtil guando os dados contém outliers ou valores extremos
gue podem distorcer a analise. Em vez de calcular a média dos valores dentro da
janela de observacédo, a mediana moével ordena os valores e seleciona o valor central.
Assim, supondo que dos dados da amostra sejam Xi+xz2+::-+xn arranjados em ordem
crescente de magnitude, e n o tamanho da amostra, a mediana da amostra sera
representada pela Equacéo 17 (Walpole et al., 2016).

X(n+1) sen for impar

X =11 ’ (17)
E(xz +xn, ) sen forpar
2 2

Tanto a média mével quanto a mediana movel sdo amplamente utilizadas em
diversas areas, incluindo financas, economia, ciéncia de dados e meteorologia (Costa
et al., 2023; Silva et al., 2018).

2.8.2 Regressao Linear

A regressdo linear é obtida estimando-se os valores dos coeficientes de
intercepto (Bo) e inclinagao (B1) através de alguma técnica de ajustamento (Helsel et
al., 2020). Segundo Naghettini e Pinto (2007), o método dos minimos quadrados é um
dos procedimentos mais adequados para este ajuste. Assim, 0 modelo de regressao
linear é dado pela Equacédo 18, considerando i=1, 2, 3, ..., n.

Yi = Bo+ Prx1 + & (18)

Onde yi € a i-ésima observacdo da varidvel dependente; x; € a i-ésima

observacdo da variavel independente; Bo € 0 coeficiente de intercepto; B1 € 0
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coeficiente de inclinagéo; ¢ € o erro aleatorio ou residual para a i-ésima observacao;
n € o tamanho da amostra. O erro residual depende da variabilidade natural do
sistema, possui média igual a zero e variancia (0?) constante, portanto, & €

independente de xi.

2.8.3 Spearman Rho

O teste Spearman Rho (SR) é um teste ndo-paramétrico, semelhante ao Mann-
Kendall, com poténcia uniforme para tendéncias lineares e néo lineares. Esse método
€ comumente utilizado para verificar tendéncias em séries temporais (Gauthier, 2001).
Neste teste, a hipotese nula, de auséncia de tendéncia (HO), ocorre quando todos os
dados da série temporal sdo independentes e identicamente distribuidos, enquanto a
hipotese alternativa, com tendéncia (Hi), existe quando hd um aumento ou a
diminuicao tendéncias (Yue et al., 2002). A estatistica D e o teste Zsr S80 expressos

pelas Equacdes 19 e 20.

_ _ 62?:1(Ri_i)2
D=1--Stm (19)
-2
Zsg =D |7 (20)

Onde R; é o ranking da precipitagdo medida no intervalo i e n € o tamanho da
amostra. Os valores positivos de Zsr indicam tendéncias crescentes, enquanto Zsr
negativo indica tendéncias negativas nas séries temporais. Quando | ZRSl > t(n-2, 1-a/2),
a hipétese nula é rejeitada e uma tendéncia significativa existe na série temporal. O
parametro tn-2, 1-02) € 0 valor critico de t a partir da tabela t-student, para o nivel

significativo de 5%.

2.84 Mann-Kendall

O teste de tendéncia de Man-Kendall (Mann, 1945; Kendall, 1975) é um dos
mais utilizados na avaliagdo de tendéncias de séries histOricas naturais que se
distanciam da distribuicdo normal, como vazdes, temperatura e precipitacdo (Hamed,
2009). A hipétese nula (Ho) assume que a série é constante, sem variacdes
significativas ao longo do tempo, mantendo a distribuicdo de probabilidade inalterada.
Ja a hipotese alternativa (H1) sugere a presenca de uma tendéncia monotbnica
(crescente ou decrescente), indicando mudancas significativas na série temporal (Xu
et al., 2003).
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Na aplicacdo do teste, para uma dada série temporal Xt, composta por n
termos, avalia-se a presenca de tendéncias comparando a ordem relativa dos valores
ao longo do tempo. Em vez de analisar os valores absolutos, o teste se baseia na
contagem de concordancias e discordancias entre pares de observagdes. ISso
significa que, para cada par de pontos na série temporal, verifica-se aumento ou
diminuicao relativa entre eles. A partir dessa analise, calcula-se o coeficiente de
Kendall Tau (S), que quantifica a forca e a direcdo da tendéncia. Além disso, o teste
fornece um p-valor, que indica a significancia estatistica da tendéncia observada.

O valor de Kendall Tau, também conhecido como coeficiente de concordancia
de Kendall, € uma medida estatistica de correlacdo usada para avaliar a associacéo
entre duas variaveis classificadas. Ele quantifica a concordancia ou discordancia entre
as classificacbes das duas variaveis, independentemente dos valores exatos das
classificagdes. O coeficiente de Kendall Tau varia de -1 a +1, sendo:

a) Se Tau for préximo de +1, indica uma forte concordéancia entre as
classificacdes das duas variaveis;

b) Se Tau for préximo de -1, indica uma forte discordancia entre as
classificacdes das duas variaveis;

c) Se Tau for préximo de 0, indica uma auséncia de associacao linear

entre as duas variaveis classificadas.

O p-valor de Kendall € uma medida estatistica usada em conjunto com o
coeficiente de concordancia de Kendall (Tau) para determinar se a relacdo observada
entre duas variaveis classificadas é estatisticamente significativa. O p-valor indica a
probabilidade de observar uma associacao téo forte (ou mais forte) entre as variaveis,
assumindo que nao haja associacéo real na populacédo. Se o p-valor for menor que
um determinado nivel de significancia (geralmente 0,05), entdo ha evidéncias
estatisticas para rejeitar a hipotese nula de que ndo ha associagao entre as variaveis.
Ou seja, a associagcao observada entre as variaveis é improvavel de ocorrer apenas
por acaso. Por outro lado, se o p-valor for maior que o nivel de significancia escolhido,
entdo ndo ha evidéncias suficientes para rejeitar a hipétese nula e se conclui que néo
h& uma associagéo estatisticamente significativa entre as variaveis. Em resumo, o p-
valor de Kendall ajuda a determinar se a relacdo entre as variaveis classificadas é

estatisticamente significativa ou se ocorreu por acaso.
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Além disso, embora o teste de Mann-Kendall permita detectar tendéncias
estatisticamente significativas, ele ndo estima a magnitude dessas tendéncias. Por
isso, sua aplicacdo € frequentemente complementada pelo Estimador de Declive de
Sen. Esse estimador quantifica a magnitude da tendéncia em uma série temporal,
determinando a inclinagcéo verdadeira caso uma tendéncia linear esteja presente (Sen,
1968). O teste Mann-Kendall é preferido ao teste de Spearman para analisar taxas de
vazao por ser robusto com dados ndo paramétricos e por detectar tendéncias
monotbnicas sem exigir uma distribuicdo especifica. Enquanto o Spearman foca na
correlacdo de classificacdo, o Mann-Kendall lida melhor com correlacdo serial e
variacfes sutis nas taxas de vazao, tornando-o mais adequado para esse tipo de
andlise (Ashraf et al., 2021; Baran-Gurgul, 2017; Hamed, 2016).

3 MATERIAL E METODOS
3.1 AREA DE ESTUDO
3.11 Bacia hidrogréfica do rio Capim-Guamé

A bacia hidrografica do Capim-Guama4, formada pela confluéncia dos rios
Capim e Guama, esta localizada no nordeste do estado do Para, abrangendo uma
area de drenagem de 80.317,63 km2. A bacia fica localizada no Nordeste Paraense,
gue é a mais antiga fronteira de colonizacdo do estado do Para. Hoje, a maior parte
de sua vegetacao original ja foi devastada ou fortemente alterada. A antropizacédo foi
acelerada a partir do desmatamento para a construcao da rodovia Belém-Brasilia, a
qual foi preconizada no Programa de Integracdo Nacional (Cordeiro et al., 2017).
Geograficamente, a bacia situa-se entre as coordenadas 1°5’33” N e 5°45’36” S de
latitude e 49°39'11” O e 46°46'6” L de longitude. E uma das principais bacias
hidrograficas do estado, destacando-se por abranger a cidade de Belém, capital do
Paré e sede da COP30, Conferéncia das Nacdes Unidas sobre Mudancas Climaticas
de 2025.

3.1.2 Sub-bacia hidrografica do rio Guama
A sub-bacia hidrogréfica do rio Guama (Figura 12), foco deste estudo,
corresponde a area de drenagem delimitada pela secéo transversal da estagcéo
fluviométrica Bom jardim, representada por Q1. Na Figura 12, também, estéo
localizadas as estacdes pluviométricas, denominadas P1, P2, P3 e P4. A sub-bacia
esta localizada entre as latitudes 1°25’44” N e 2°35'43” S e as longitudes 47°28’57” O
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e 46°46’'6”, abrangendo uma area total de 5.001,29 km?. A sub-bacia abrange 4
municipios, sendo estes: Capitdo Poco, Garrafdo do Norte, Ourém e Santa Luzia do
Para.
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Figura 12: Localizagédo da sub-bacia hidrografica do rio Guaméa

O clima da éarea de estudo é o Am, conforme a classificagdo climatica de
Kdppen-Geiger, caracteristico de um clima tropical, com temperaturas acima de 18°C,
altos indices de precipitacdo e presenca de uma estiagem de pequena duragdo
(Alvares et al., 2013). A classe de uso do solo predominante na bacia hidrogréafica é a
Pastagem, ocupando 62,13% da area total, evidenciando sua importancia no contexto
regional. Além disso, existe a Formacéo Florestal, com 34,54%, e a Floresta Alagavel,
com 1,54%, caracterizando a vegetacao natural da regido. Em menor escala, estao
as areas destinadas a plantacfes de dendé, soja e outras lavouras temporarias, que
somam 0,72%, e a area urbanizada, correspondendo a 0,27% da area da bacia
(Mapbiomas Brasil, 2024). A Figura 13 apresenta tais classes da cobertura e uso da

terra para a area de estudo.
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Figura 13: Mapa do Uso e Cobertura da terra da sub-bacia hidrogréafica do rio
Guama

3.2 EXTRACAO DE DADOS

No presente estudo, a andlise dos dados foi conduzida considerando dois
periodos de andlise distintos: um periodo de referéncia e um periodo futuro. O periodo
de referéncia abrange os anos de 2009 a 2021, sendo utilizado como base para
estabelecer condi¢des e tendéncias historicas. E o periodo futuro estende-se de 2022
a 2100. Na Tabela 2 sédo apresentados dados sobre identificacdo, coordenadas
geograficas, estacdes hidrometeoroldgicas e siglas utilizadas ao longo do texto. Os
dados de chuva e vazao observados e registrados pelas estacdes estdo disponiveis
na plataforma HYDROWEB (https://www.snirh.gov.br/hidroweb/serieshistoricas) da
ANA.
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Tabela 2: Identificacdo, coordenadas geograficas e estacdes hidrometeorologicas
utilizadas no estudo

Cadigo Tipo Nome da estacéo Longitude Latitude Sigla
147016  Pluviométrica  Ourém 47°07°02°O0  01°3306”S P1
147011  Pluviométrica  Santa Luzia 46°54'22” 0  01°4756"S P2
146012  Pluviométrica  Japim 46°41748" O  01°4756”S P33
247004  Pluviométrica  Fazenda S&o Raimundo 47°30°'58" O  02°25'34”S P4

31520000 Fluviométrica  Bom Jardim 47°03’56” O  01°3226”S Q1

Fonte: ANA (2024)

Projecdes climaticas do GCM GFDL-ESM4, parte do conjunto NASA Earth
Exchange Global Daily Downscaled Projections (NEX-GDDP) do CMIP6, com
resolucao espacial de 0,25° x 0,25° foram utilizadas para alimentar a modelagem com
chuvas futuras. As precipitacdes projetadas foram utilizadas para os dois periodos de
andlise (referéncia e futuro). O periodo que abrange projecdes climaticas historicas
do CMIP6 corresponde aos anos de 1850 a 2014. Entretanto, foram baixadas as
projecdes climaticas a partir de 2009, em correspondéncia com a disponibilidade de
dados observados da sub-bacia. O conjunto de dados de referéncia é necessario para
se observar o “presente” ou “passado recente”.

As precipitagdes projetadas, a partir de 2022 até 2100, foram obtidas com base
em dois cenarios de desenvolvimento socioeconémico compartilhados: SSP2-4.5, que
representa um cenario intermediario com politicas moderadas de mitigacdo e
transicdo tecnoldgica; e o SSP5-8.5, que reflete um cenéario de crescimento
econdmico intenso impulsionado por combustiveis fosseis e altas emissdes de gases
de efeito estufa (Leimbach et al., 2017; O’Neill et al., 2016). O GCM selecionado para
obtencdo dos dados de chuva futura foi o GFDL-ESM4. De acordo com o
ranqueamento realizado por Mendonga et al. (2024), os GCMs que melhor simularam
as variacbes sazonais de precipitacdo no bioma amazdnico foram, em ordem
decrescente de desempenho: KIOST-ESM, FGOALS-g3, CESM2-WACCM, BCC-
CSM2-MR, NESM3 e GFDL-ESM4, este ultimo ocupando a sétima posi¢do. No
entanto, ao realizar uma analise de correlacdo em escala de pixel com base nos dados
historicos, o GFDL-ESM4 destacou-se como 0 modelo mais adequado para a regiao
de estudo, justificando sua selegéo.

O GFDL-ESM4 vem sendo desenvolvido pelo Geophysical Fluid Dynamics
Laboratory (GFDL), criados nos Estados Unidos com o apoio da National Oceanic and
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Atmospheric Administration (NOAA). Assim, as precipitacdes projetadas de referéncia
e futura foram associadas diretamente as coordenadas geograficas das estacdes
pluviométricas P1, P2, P3 e P4.

3.3 METRICAS DE DESEMPENHO

Na Tabela 3 sdo apresentadas as métricas de desempenho utilizadas no
estudo. As métricas incluem o o Erro Médio Quadratico (MSE), o Coeficiente de
Determinac&o (R?), o Valor de Ajuste (FIT) e o indice de Eficiéncia Kling-Gupta (KGE)
e suas componentes.

Tabela 3: Métricas de desempenho

Métricas Formulas g/t?ri”?(; Referéncia
Ly ; Chai e Draxl
MSE gzm( i'Ei) 0 aEZeOlézjxer
n 2
R2 1-—Zi=l(s'-o') 1 Steel e Torrie
" (0.-0) (1981)
i=l(oi_o)
n 2
FIT \/Z‘:l(O'_ £) 1 Nouri e Homaee
1- n (2018)
Omax_omm
2 2 2
KGE 1- (1) +(1-7) +(1-B)
KGEr 1— (1—I’)2
1 Gupta et al. (2009)
KGEy 1— ’(1_7,)2
KGEB 1— (1—ﬂ)2

Na Tabela 3, Oi e Ei sdo valores observados e estimados, respectivamente;
Omax € Omin S80 as observacdes maximas e minimas, respectivamente; 0 é a média

dos valores observados; n é tamanho da amostra; o parametro r representa a
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correlacdo de Pearson; y € a razdo entre o coeficiente de variagcdo dos valores
estimados (CVs = oE/JE) e o coeficiente de variacdo dos valores observados (CVo =
o0/u0) e; B é arazdo entre a média dos valores estimados (Ei) e a média dos valores
observados (Oi). Sobre a melhor faixa de desempenho do KGE, para determinar se
um modelo € “bom” ou “ruim”, foram adotados niveis de desempenho determinados
por Mai et al. (2022) (Tabela 4). A classificacao da precisdo baseada no FIT pode ser
resumida da seguinte forma: valores FIT de 0,90 ou superiores indicam excelente
precisdo, valores variando de 0,70 a 0,90 significam precisdo confiavel e valores
inferiores a 0,60 refletem baixa precisao (Nouri e Veysi, 2024).

Tabela 4: Niveis de desempenho estratificados para qualificar um modelo

Parametro Ruim Médio Bom Excelente
KGE [-~ a0,48] [0,48 a 0,65] [0,65 a 0,83] [0,83a1l]
KGEr [-0 a0,70] [0,70 a 0,80[ [0,80 a 0,90[ [0,90 a 1]
KGEy [-~ a0,70[ [0,70 a 0,80[ [0,80 a 0,90[ [0,90 a 1]
KGER [-0 a0,70] [0,70 a 0,80][ [0,80 a 0,90[ [0,90 a 1]

Fonte: Mai et al. (2022)

3.4 CORRELA(}AO CRUZADA E AUTOCORRELAQAO PARCIAL

Correlacdo cruzada e autocorrelacdo parcial sdo técnicas utilizadas para se
obter um modelo parcimonioso, evitando-se aumentar o nimero de defasagens na
entrada da rede neural sem ganho significativo de desempenho, definindo-se de forma
mais coerente os vetores de entrada no modelo RNN-NARX. A correlagdo cruzada
(Bayer et al., 2012) é utilizada para avaliar a relacéo linear entre precipitacéo (P1, P2,
P3, P4) e vazédo (Q1), considerando defasagens temporais nas séries observadas
(Equacéo 21 e Equacao 22).

COV(y xy) = %{tg;l(y_g)(xt—k _;():| (21)

COV(y‘X(Fk))

rx(t—k)y =

= (22)
(y-y)

Onde cov é a covariancia amostral, y e X sdo as variaveis abordadas, k séo os
valores defasados do instante t, y e x sdo médias amostrais, e n € o numero de
observacdes. A autocorrelacéo parcial foi usada para analisar a influéncia de valores
passados da vazao sobre os atuais, isolando efeitos de defasagens distintas, com um

intervalo de confianga de 99% (Mendonca et al., 2021). Esse indice elimina
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interferéncias entre defasagens e representa a dependéncia temporal real (Equacéo
23 e Equacéao 24).

p= 300904 -9)|

t=k+1

(v —9)2} (23)

=1

k-1 k-1

h=| - S(d —pk,-)} 1S n )} (24)

L j=1 L j=1

Onde pk é o coeficiente de autocorrelacdo, y € a variavel autocorrelacionada
nos instantes t e t-k, y € a média de y, ¢k« € 0 coeficiente de autocorrelacdo parcial e

¢k-1j S&o os coeficientes de autocorrelacao parcial filtrados das defasagens anteriores.

3.5 MODELO RNN-NARX
Para a modelagem das séries temporais de vazdo neste estudo, sob o0s
cenarios climéaticos SSP2-4.5 e SSP5-8.5, foi utilizado uma rede neural recorrente,
com arquitetura Autorregressiva Nao Linear com Entradas Exdgenas (RNN-NARX), ja
exploradas por outros autores (Fabio et al., 2022; Guzman et al., 2017). As redes
NARX’s possuem conexdes recorrentes que permitem que a rede tenha uma memoéria
interna (feedback), necesséria para capturar dependéncias temporais e sequenciais
nos dados (Sit et al., 2020), conforme expresso pela Equacédo 26.
z
y, =f [Z;Wknxn +ka (26)
e
Onde cada xn € ponderado por um peso sinaptico wikn, que é somado ao
parametro bias bk, que modula o sinal de saida através de uma funcéo de ativagéo f,
ou seja, as informacdes fluem através de sucessivas conexdes ponderadas, até gerar
um sinal de resposta (yk). A seguir sdo descritas as etapas de treinamento e validacao
cruzada. As secdes 3.5.1, 3.5.2 e 3.5.3 apresentam a divisdo de dados e as etapas
de desenvolvimento do modelo, o qual foi desenvolvido em linguagem de

programacao computacional.

3.5.1 Divisdo do conjunto de dados
No processo de parametrizacdo, isto €, durante o treinamento os vetores de
entrada sdo um conjunto de dados observados, correspondentes a vazao e
precipitacdo extraidas das estacdes, Figura 14 e Figura 15, respectivamente. Os

dados foram divididos em dois subconjuntos: destacando-se treinamento (2009-2019)
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e validacdo cruzada (2020-2021), que utiliza um subconjunto de dados independente

do utilizado durante o treinamento.
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Ao utilizar redes de algoritmos de retropropagacédo, dependendo da fungéo de
ativacdo dos neurdnios, é necessario realizar a normalizacado dos dados de entrada.
Sola e Sevilla (1997) afirmaram que a normalizacdo dos dados de entrada € crucial
para obter bons resultados, bem como agilizar substancialmente os calculos. Dessa
forma, os dados foram normalizados no intervalo de -1 a 1, conforme a Equacéo 25,
para se adequar a faixa de funcionamento da funcédo de ativacdo. Este intervalo

corresponde a faixa de funcionamento da funcdo de ativacdo tangente hiperbdlica.

> min_ (imax - imin) (25)

Xmax—Xmin

Em que x é a variavel, que se deseja normalizar, x, € a variavel normalizada,

Xn = lpin T

Xmin € Xmax SA0 0S valores minimos e maximos encontrados nos dados, € imin € imax S&0,
respectivamente, os limites inferior e superior do intervalo, que se deseja normalizar.
Ao final das simulagdes, as vazdes diarias foram desnormalizadas, retornando aos

seus valores originais.

3.5.2 Treinamento
No treinamento, o modelo foi parametrizado no modo open loop. O conjunto de
dados observados foi utilizado como entrada, permitindo ajuste de pesos e biases a
fim de aprender a relagdo ndo linear entre a precipitacdo (entrada) e a vazao (saida).
Essa fase tem como objetivo otimizar os parametros internos da rede para minimizar

o erro de previsdo. O modelo foi configurado da seguinte forma:

- Camada de entrada: os vetores de entrada correspondem as precipitacdes e
vazdes, nos quais foram testadas varias combinacdes de valores defasados;

- Camada Oculta: utilizou-se uma Unica camada oculta, suficiente para
aproximar funcdes nao lineares (Menezes e Barreto, 2008). O numero de
neurdnios ocultos (entre 2 e 20) foi definido pelo método das aproximacdes
sucessivas, tendo como fungéo objetivo o MSE (Tabela 3). A quantidade de
neurénios na camada oculta é crucial no processo de treinamento. Uma
guantidade pequena de neurbnios pode ser insuficiente para aprender o0s
padrdes existentes (underfitting). Por outro lado, uma maior quantidade de
neurdnios pode conduzir & perda de capacidade de generalizacdo (overfitting);
- A funcéo de ativacéo aplicada na camada oculta da RNN-NARX foi a tangente
hiperbdlica (tanh). Visto que os estudos de Rezaeian Zadeh et al. (2010) e

Yonaba et al. (2010) mostraram que a funcdo tangente hiperbodlica teve um
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desempenho melhor do que a log-sigmoide na previsao de vazdes diarias. Foi
utilizada apenas uma camada oculta, pois é suficiente para aproximar qualquer
funcédo néo linear (Hornik et al.,1989); e

- O algoritmo de otimizag&o utilizado foi o Levenberg-Marquardt (trainlm),
realizado ao longo de até 1000 épocas para minimizar o MSE. Este algoritmo
€ uma adaptacdo do método Gauss-Newton, abordando um treinamento de
segunda ordem com a aproximacdo de uma matriz Hessiana (Sahoo e Jha,
2013). A partir desse algoritmo de treinamento, expresso pela Equacao 8
(Secdao 2.6.8), o ajuste dos parametros dos pesos sinapticos (wx) e bias (bk) foi

elaborado.

Cada combinacéo possivel é treinada vérias vezes, e a configuracdo com o menor

erro é a escolhida para dar continuidade a validacdo cruzada.

3.5.3 Validacdo cruzada por parada antecipada

A validag&o cruzada é uma extensao do treinamento, pelo qual se acompanhou
a evolucdo do aprendizado sobre um conjunto de dados distinto. Nesta etapa, o
método de parada antecipada foi utilizado para evitar overtraining. Os critérios de
finalizacdo do treinamento sdo mostrados na Tabela 5. A parada antecipada consiste
na avaliacdo iterativa de um subconjunto de dados, de modo que quando alcancado
algum critério especifico, tal como o menor erro pré-definido, a etapa seja interrompida
(Mendonga et al., 2023).

Tabela 5: Condicdes de parada antecipada por validacdo cruzada

Parametro Valor
Maximo numero de iteracdes 1000
Desempenho desejado (erro quadratico médio maximo) 0,005
N° max. de aumento de desempenho na validagao 200
Tempo maximo de treinamento (segundos) 3000

Inicialmente, o modelo foi configurado em modo Open Loop durante o periodo
de referéncia. Posteriormente, ainda nesse mesmo periodo, foi convertido para o
modo Closed Loop para avaliar sua capacidade de realizar previsbes autbnomas e

verificar seu desempenho em estimativas de longo prazo. Os vetores de entrada
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utilizados foram as precipitacées projetadas pelo GCM GFDL-ESM4, que abrangem
dados do periodo historical e cenarios do periodo de 2009 a 2021, uma vez que 0S
cenarios climaticos do CMIP6 comecam apenas em 2015. Apds a avaliagdo do
desempenho do modelo e a obtencéo das equagbes de correcdo (Secédo 3.6), as
vazdes de longo prazo (2022 a 2100) foram simuladas, considerando os dois cenarios
climaticos do CMIP6: SSP2-4.5 e SSP5-8.5.

3.6 CORRECAO DE VIES DAS VAZOES SIMULADAS

As vazdes futuras foram corrigidas pelo método Empirical Quantile Mapping
(EQM), um dos métodos mais utilizados e efetivos para a correcdo de viés de varaveis
que foram simuladas, tendo como entradas variaveis forcantes oriundas de GCMs
(Holthuijzen et al., 2022). Este método se fundamenta nas transformacdes estatisticas
e probabilisticas (Angus, 1994), ajustando as distribuicbes simuladas as observadas,
minimizando distor¢des (Equacéo 27).

Qcorra = CDFyps(CDFygm (Qsim,a) (27)

Onde CDFsimt é a funcdo a funcédo de distribuicdo acumulada aplicada a
variavel simulada em valores diarios (Qsimd), transformando esses valores para o
espaco probabilistico padréo (intervalo [0,1]). Ja a CDFgpst € a funcéo que transforma
0 espaco probabilistico de volta para o dominio das vazées diarias corrigidas (Qcorr,d).
Dessa forma, as vazbes simuladas pelo modelo RNN-NARX para o periodo de
referéncia (2009 a 2021) foram utilizadas como controle, enquanto as vazdes
simuladas para o periodo futuro (2022 a 2100) foram submetidas ao processo de

correcao.

3.7 TESTE MANN-KENDALL

O teste MK é um método de teste estatistico ndo paramétrico comumente
utilizado para analisar a tendéncia de uma série temporal. O método ndo exige que 0s
dados obedecam a uma distribuicdo especifica e a faixa de teste é ampla. E adequado
para testes de tendéncias de dados hidrometeoroldgicos aleatorios e nao
normalmente distribuidos (Yue et al., 2002). O teste examina a significancia da
estatistica MK padronizada, i.e., Za2 (Equagéo 31). O valor estatistico S para séries

temporais é definido pela Equagéo 28.

S=3IY son(x, ) 23)
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Onde sgn é fungéo de sinal; n &€ o tamanho da amostra, x; e xj S0 variaveis
aleatorias com x; seguindo x; no tempo. O valor positivo da estatistica S indica uma
tendéncia ascendente da série temporal; caso contrario, um valor negativo significa
uma tendéncia descendente. Quando n é maior que 8, pode-se considerar que S
obedece a suposicdo de distribuicdo normal padrdo, e sua expectativa E(S) e

variancia Var(S) podem ser expressas pela Equacdo 29 e Equacao 30,

respectivamente.
E(S)=0 (29)
VaNS):f%[nUm—Q(2n+5ﬂ (30)

(S-1)/Var(S) S>0
Z.,=10 S=0 (31)
(S+1)/var(S) S<O

Para uma sequéncia aleatéria, o valor critico do teste Za2 no determinado nivel
de significancia pode ser encontrado na tabela de distribuicdo normal, sendo a o limite
para significAncia estatistica. Um valor de 1,96 < |Za2| < 2,58 indica que a amostra tem
uma tendéncia de mudanca significativa no nivel de significancia a = 0,05; quando
|Zar2| > 2,58, indica que a série de dados tem uma tendéncia de mudanca significativa
no nivel de significancia de a = 0,01. Em que o p-valor de 0,05 ou inferior é
considerado como indicativo de uma mudanga estatisticamente significativa, enquanto
p-valor de 0,01 ou inferior indica uma mudanc¢a muito significativa (Kendall, 1975).

O MK foi utilizado em conjunto com o estimador Sen’s Slope e o coeficiente de
variacdo (CV) para avaliar a tendéncia das vazdes futuras médias de longo periodo
da sub-bacia hidrogréafica do rio Guama. A vazdo média de longo periodo permite
caracterizar a maior vazao possivel de ser regularizada em uma bacia permitindo a
avaliacéo dos limites superiores (abstraindo as perdas) da disponibilidade de agua de
um manancial. A vazdo média de longo periodo é definida como a média das vazdes
meédias anuais para toda a série de dados, sendo especifica quando dividida pela area
da bacia hidrografica de interesse (Alexandre e Martins, 2005).

3.8 ESTIMADOR SEN’S SLOPE
Além de identificar se existe uma tendéncia, a magnitude de uma tendéncia

também deve ser estimada. O estimador Sen's Slope € um método ndo paramétrico
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amplamente utilizado para identificar e quantificar tendéncias em séries temporais
(Sen, 1968). Esse método é considerado robusto por néo ser sensivel a outliers e por
nao exigir normalidade ou linearidade. Sendo frequentemente empregado em analises
ambientais, hidrologicas e climéticas(Yue et al., 2002). O estimador Sen’s Slope (B) €
a mediana sobre todas as combinacdes possiveis de pares para todo o conjunto de
dados (Sj). Um valor positivo de B indica uma 'tendéncia ascendente’, enquanto um
valor negativo de (3 indica uma 'tendéncia descendente'(Hirsch et al., 1991; Xu et al.,
2007). Ainclinacao, i.e., a taxa linear de mudanca, é calculada via Equacao 32.

_ X]' —Xj

Sij =

(32)

j—i
Onde Sj é a inclinacdo, x denota a variavel e i, j sdo indices. O valor final do
Sen's Slope (B) corresponde a mediana de todas as inclinacdes (Si), conforme dado
pela Equacédo 33.
B = mediana(S;) (33)

3.9 COEFICIENTE DE VARIANCIA

O coeficiente de variacdo (CV) sera aplicado a uma série temporal de vazbes
diarias como uma medida de variabilidade relativa. Ele é calculado como a raz&o entre
o desvio padréo (o) e a média (X) das vazdes diarias, conforme a Equacéo 34.

CV =100 (34)

Neste estudo, foram realizadas andlises de tendéncias de vazdes diarias, para
identificar possiveis mudancas significativas no regime hidrolégico, como aumentos
ou reducbes nas vazdes, que podem estar associadas ou ndo a influéncia das

mudancas climaticas. A Figura 16 mostra o fluxograma da metodologia desenvolvida.
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Figura 16: Fluxograma da metodologia apresentada para estimar as vazdes com um
modelo RNN-NARX sob a influéncia das mudancas climaticas.
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4 RESULTADOS E DISCUSSAO
4.1 CORRELACAO CRUZADA E AUTOCORRELACAO PARCIAL

A Figura 17 mostra os coeficientes de correlagdo cruzada entre a vazao
observada (Q1) e as precipitacdes (P1, P2, P3 e P4). Ademais, a Figura 17 mostra o
coeficiente de autocorrelacao parcial para a vazao observada com defasagens de até

10 dias e intervalo de confianca de 99% indicado pelas linhas tracejadas em azul.
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Figura 17: Coeficientes de correlagdo cruzada entre a vazao (Q1) e as precipitacdes
(P1-a, P2-b, P3-c e P4-d) e coeficientes de autocorrelacao parcial da vazéo (e), com
intervalo de confianca de 99% para o periodo de referéncia (2009-2021)

Nas Figuras 17-a, 17-b, 17-c e 17-d, sdo apresentados os coeficientes de
correlacdo cruzada entre a vazdo (Q1l) e as precipitacdes (P1, P2, P3 e P4). Os
coeficientes positivos observados nas defasagens de até 10 dias representam a
resposta ndo imediata da vazdo em relacdo as precipitacfes. Nota-se um padrao
crescente nos valores a medida que os dias passam, 0 que sugere uma influéncia
temporal e espacial das precipitacfes sobre a vazdo. Esse efeito é mais pronunciado
na estacdo mais distante ao exutério (P4), pois a precipitacdo, medida nessa estacao,
demora mais tempo (dias) para influenciar as vazoes, refletindo em uma resposta
hidrologica mais lenta. Isso é devido a néo linearidade do fenémeno chuva-vazao.

Ja na Figura 17-e, a autocorrelacdo parcial das vazbes mostra uma
dependéncia temporal positiva no primeiro dia de defasagem (préximo a 1) e negativa

hY

no segundo dia (préximo a -0,2). Esse comportamento reflete a persisténcia das
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condi¢cBes hidrologicas e a inércia do sistema, onde os valores iniciais de vazao
influenciam diretamente nos valores dos dias subsequentes. Mendonca et al. (2021),
ao analisar uma série temporal de dados até 2019, identificaram valores de
autocorrelacdo parcial semelhantes na mesma sub-bacia. Entretanto, observa-se
divergéncias em relacdo aos valores de correlacdo cruzada encontrados no estudo
dos autores. Isso pode ser explicado pela inclusado de dados dos anos de 2020 e 2021,

neste estudo, que refletiram na resposta hidrolégica.

4.2  PERIODO DE REFERENCIA

4.2.1 Open Loop - treinamento e validacdo cruzada

No processo de parametrizacdo do modelo, as analises de defasagem temporal
das variaveis (Figura 17) possibilitaram a definicdo dos vetores de entrada do modelo

e seus atrasos, incluindo a retroalimentacéo das vazoes (Tabela 6).

Tabela 6: Vetores de entrada e os atrasos temporais da RNN-NARX treinada

Vetores de

Atrasos de Entrada Retroalimentagéo Saida
Entrada

P, F;i((tt))’ P3| (1), ((tt?) ((tt?é)) 4. | o-1), 0t-2), ot-3) | Q@)

Na Tabela 6 observa-se a configuracdo dos vetores de entrada e
retroalimentacéo definidos para a RNN-NARX, que apresentou as melhores métricas
de desempenho entre as vazdes simuladas (saida do modelo) e as vazdes
observadas (Tabela 7). Os vetores de entrada incluem as séries de precipitacao
projetadas P1, P2, P3 e P4 com atrasos de 1 a 6 passos de tempo (t-1, t-2, t-3, t-4, t-
5, t-6). Adicionalmente, a retroalimentacdo da rede foi estruturada utilizando valores

passados da série de vazao Q, com atrasos de 1 a 3 passos de tempo (Q(t-1), Q(t-2),

Q(t-3)).

A seguir, a Figura 18 ilustra a comparacao entre a vazdo simulada pelo modelo
e a vazao observada, para o periodo de referéncia (2009 a 2021), a partir da obtencéo

dos parametros do modelo.
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Figura 18: Disperséo entre os dados observados e simulados nas etapas de
treinamento e validacdo para o periodo de referéncia (2009-2021), resultado da
parametrizagao

A Figura 18, demonstra a dispersao entre os dados observados e simulados
durante as etapas de treinamento e validacdo para o periodo de 2009 a 2021.
Analisando-se a proximidade dos pontos em relacéo a linha de referéncia indica que
o modelo conseguiu reproduzir com boa precisdo os dados observados, sugerindo
uma parametrizacdo adequada. Essa andlise é necessaria para validar a
confiabilidade do modelo e garantir que a parametrizacdo do modelo tenha sido eficaz.

A seguir, a Tabela 7 mostra a avaliacdo de desempenho das vazdes simuladas
pela RNN-NARX, que foram obtidas a partir da configuracdo apresentada

anteriormente (Tabela 6).

Tabela 7: Métricas de desempenho da RNN-NARX no treinamento e validagao

cruzada
Etapa FIT R2 KGE KGEr KGEy KGER
Treinamento 0,98 0,99 0,99 0,99 0,99 1,0

Validacdo cruzada 1,0 0,99 0,99 0,99 1,0 1,0
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As métricas apresentaram valores elevados (FIT=0,98; R2=0,99; KGE e
componentes=0,99 a 1,0), indicando um excelente nivel de desempenho entre os
dados simulados e observados no treinamento. Por conseguinte, os resultados na
etapa de validacdo cruzada permaneceram excelentes (FIT=1,0; R?=0,99; KGE e
componentes=0,99 e 1,0), demonstrando alta generalizacdo do modelo. Isso confirma
a eficiéncia do modelo RNN-NARX na predicao de vazdes na sub-bacia, assim como,
em Mendonca et al. (2021), que encontraram valores de R2 de 0,987 e 0,99 nas etapas

de treinamento e validag&o cruzada, respectivamente.

4.2.2 Closed Loop — simulacao de vazéo

ApOs a parametrizacdo da rede, as vazdes foram simuladas (agora no Closed
Loop) para avaliar a capacidade de generalizagdo do modelo, ainda no periodo de
referéncia. A Tabela 8 mostra os resultados quantitativos da avaliacdo de
desempenho dessas simulacdes, que incluem as métricas FIT, R2 e KGE. A avaliacéo
buscou evidenciar o nivel de precisdo e confiabilidade do modelo RNN-NARX em
ambos os cendérios climéaticos no periodo de referéncia. Os resultados da andlise
indicam um desempenho satisfatério do modelo em ambos o0s cenarios, com as

métricas FIT e KGE refletindo uma boa aderéncia as vazdes observadas.

Tabela 8: Métricas de desempenho das vazdes na validacdo da RNN-NARX sob os
cenarios SSP2-4.5 e SSP5-8.5 para o periodo de referéncia

Cenério FIT R2 KGE KGEr KGEy KGER
SSP2-4.5 0,88 0,58 0,73 0,76 0,87 1,00
SSP5-8.5 0,88 0,56 0,73 0,75 0,92 0,99

O valor de ajuste (FIT) foi de 0,9 nos cenarios SSP2-4.5 e SSP5-8.5, indicando
gue o modelo apresentou precisdo confiavel (Nouri e Veysi, 2024). O indice KGE
revelou um desempenho semelhante entre os cenarios, com valores de 0,73 para
SSP2-4.5 e SSP5-8.5, indicando que o modelo foi capaz de estimar as vazdes com
boa preciséo, conforme os critérios de desempenho definidos por Mai et al. (2022). O
componente de correlacéo (r) foi sutiimente mais forte no cenario SSP2-4.5 (0,76) em
comparacdo com o SSP5-8.5 (0,75), sugerindo um nivel de desempenho médio. O

componente y, que reflete a variabilidade das estimativas, apresentou valores de 0,87
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para o cenario SSP2-4.5 e 0,92 para o SSP5-8.5, classificando ambas as estimativas
como boas. Por fim, os valores do componente 3 foram de 1 para o cenario SSP2-4.5
e 0,99 para o SSP5-8.5, indicando uma excelente performance no viés. Esses
resultados mostram que o0 modelo consegue capturar parte significativa da
variabilidade nas vazfes observadas. Porém, pode-se constatar que o desempenho
foi afetado por um erro sistematico nas precipitacbes projetadas pelo GCM,
caracterizada pelo atraso no pico das chuvas maximas. O atraso de pico nas
projecbes CMIP6 dos GCMs é influenciado, principalmente, pelos vieses dos GCMs.
O estudo de Tebaldi et al. (2021) demonstrou que as trajetérias individuais dos GCMs,
sob os diferentes cenarios, causam um atraso em comparagdo com as projecoes
médias de um multimodelo.

A Figura 19 mostra o grafico de dispersdo, comparando as vazdes simuladas
para os cenarios climaticos SSP2-4.5 e SSP5-8.5 e as vazdes observadas do periodo
de referéncia (2009 a 2021).
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Figura 19: Dispersao das vaz0fes diarias observadas e estimadas durante a
validacdo da RNN-NARX para os cenarios SSP2-4.5 (a) e SSP5-8.5 (b) no periodo
de referéncia (2009-2021)

E possivel observar a subestimacdo das vazdes maximas pelo modelo RNN-
NARX, em ambos os cenarios (Figura 19). Esse comportamento sugere que o modelo

apresenta limitagdes para simular vazées maximas. Logo, técnicas de correcédo de



72

viés sdo necessarias na mitigacdo de erros sistematicos em vazbes simuladas,

provenientes de dados climaticos projetados (Lin et al. 2019).

4.2.3 Correcao de Viés

Para a correcéo de viés, o método EQM, foi aplicado ao periodo de referéncia
com dados observados e simulados pela RNN-NARX, que tiveram como entradas as
precipitacdes simuladas pelo GCM- GFDL-ESM4, seguindo os cenarios SSP2-4.5 e
SSP5-8.5. A Figura 20 apresenta as equacdes obtidas para correcdo das vazdes

futuras via método EQM no periodo de referéncia (2009 a 2021).

(a) SSP2-4.5 (b) SSP5-8.5
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Figura 20: Equac®es para a correcdo das vazdes simuladas pelo método EQM para
0 cenario SSP2-4.5 (a) e SSP5-8.5 (b), no periodo de referéncia (2009-2021)

Na Figura 21 sdo mostradas as curvas de distribuicdo cumulativa das vazdes
observadas, estimadas e corrigidas, para ambos os cenarios climaticos (SSP2-4.5 e
SSP5-8.5).
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Figura 21: Curvas de vazfes observadas, estimadas e corrigidas para 0s cenarios
SSP2-4.5 (a) e SSP5-8.5 (b), para o periodo de referéncia (2009-2021)

Observa-se na Figura 21 que as vazdes simuladas (linha preta) subestimam os

valores maximos, uma limitacdo ja identificada previamente. No entanto, as vazdes

corrigidas (linha vermelha) demonstram uma maior aproximacdo das vazles

observadas (linha azul), especialmente nas extremidades, em ambos o0s cenarios

analisados. Essa melhoria € destacada pelo desempenho superior da métrica de

variabilidade KGEy. A Tabela 9 apresenta as métricas de desempenho (FIT, R, KGE

e suas componentes) antes e depois da correcao de viés nas vazdes simuladas pela
RNN-NARX, sob os cenarios SSP2-4.5 e SSP5-8.5, para o periodo de referéncia.

Tabela 9: Valores das métricas de desempenho antes e depois da correcao de viés
nas vazdes simuladas pela RNN-NARX, sob os cenarios SSP2-4.5 e SSP5-8.5, para
0 periodo de referéncia (2009-2021)

SSP2-4.5
Métricas Antes Depois
FIT 0,88 0,87
R2 0,58 0,56
KGE 0,73 0,75
KGEr 0,76 0,75
KGEy 0,87 0,98
KGER 1,0 1.0

SSP5-8.5
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Antes Depois
FIT 0,88 0,87
R? 0,56 0,54
KGE 0,73 0,74
KGEr 0,75 0,74
KGEy 0,92 0,98
KGEB 0,99 1,0

Conforme o0 exposto na Tabela 9, os valores de FIT permaneceram
consistentes em torno de 0,9, indicando simulagées com precisdo confiavel, bem
como o R2 (~0,6-0,5). O indice KGEr apresentou valores de 0,75 e 0,74 nos cenarios
SSP2-4.5 e SSP5-8.5, respectivamente, com uma reducdo de 0,01 em ambos os
cenarios apos a correcdo. No entanto, a principal melhoria ocorreu na componente de
variabilidade (KGEy), que aumentou de 0,87 para 0,98 no cenario SSP2-4.5 e de 0,92
para 0,98 no SSP5-8.5. Isso indicou uma melhoria de "bom" para "excelente" na
variabilidade da série simulada. Além disso, o KGEB manteve um desempenho
excelente, com valor igual a 1 em ambos os cenarios. O que refletiu em uma melhora
no indice geral KGE, que atingiu 0,75 e 0,74 para SSP2-45 e SSP5-8.5,
respectivamente. Esse aprimoramento refletiu no indice geral KGE, que atingiu 0,75
no SSP2-4.5 e 0,74 no SSP5-8.5. Apdés a correcdo, o desempenho geral das
simulagdes foi classificado como “confiavel”’, “bom” e “excelente”. Ressaltando-se a
importancia de corrigir vazdes simuladas por modelos que utilizam projecbes

climaticas provenientes de GCMs.

4.3 PERIODO FUTURO

4.3.1 Closed Loop -Simulacdo das vazbes sob influéncia das mudancas

climaticas

As equacbes de correcdo de viés (na Figura 20) foram aplicadas as vazoes
simuladas entre 2022 a 2100, considerando os cenarios climaticos SSP2-4.5 e SSP5-
8.5, respectivamente. Assim, as Figuras 22 e 23 apresentam os hidrogramas para o
periodo de referéncia (2009 a 2021), e futuro (2022 a 2100). Esses gréficos ilustram
0 comportamento das vazdes simuladas pela RNN-NARX, a partir das precipitacdes
simuladas pelo GFDL-ESM4.
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Figura 22: Vazao simulada para o cenario SSP2-4.5 para o periodo futuro (2022-
2100)

BOO
750 1
700 4
B50 4
600 4
550 +
500 1
450
400 1
350 4
300 4
250 1
200 1

---- Vazao observada
— Vazdo simulada
---- |nicio das simulagdes {2022)

Vazao (m3fs)

/

| AR

FEFELETEEE S S S

Tempo (anos)

I J“W NN]N Il h |

Figura 23: Vazao simulada para o cenario SSP5-8.5 para o periodo futuro (2022-
2100)

Observam-se as variacdes nas vazfes minimas e maximas, tanto no cenario

de médias emissbes (SSP2-4.5), quanto no cendrio de altas emissbes (SSP5-8.5),
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apresentadas na Figura 22 e Figura 23, respectivamente. As variacdes nas vazoes
maximas Sao mais perceptiveis, pois essas vazOes sdo mais dependentes de
fenbmenos metrolégicos, tais como a Zona de Convergéncia Intertropical (ZCIT) e a
Zona de Convergéncia do Atlantico Sul (ZCAS) que atuam na Amazonia durante a
estacdo chuvosa (Amanajas e Braga, 2012; Moura e Vitorino 2012). Por outro lado,
as vazOes minimas, com variacdes menos perceptiveis, ocorrem durante a estiagem
e estdo diretamente relacionadas ao volume de agua subterrdnea armazenado nas
cheias. Isso se deve as caracteristicas da sub-bacia do rio Guama, que favorecem a
infiltracdo por conta dos solos profundos e da baixa declividade (Mendonca et al.,
2021). De qualquer forma, € importante considerar que a variacdo das vazoes, pelo
menos nas proximas duas décadas, pode estar diretamente associada aos impactos
das mudancas climéticas. Isso porgue estima-se que, até 2040, a temperatura global
atingird um aumento de até 2°C em relacdo aos niveis pré-industriais, conforme
destacado por Park et al. (2022). Essa elevacdo térmica pode influenciar
significativamente os padrdes hidrologicos, alterando a disponibilidade e a distribuicdo
dos recursos hidricos. A seguir, as vazdes simuladas sdo apresentadas na Figura 24,

distribuidas por més, para ambos os cenarios.
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Figura 24: Distribuicdo das vazdes simuladas por més para o cenario SSP2-4.5 (a) e
SSP5-8.5 (b), no periodo futuro (2022 a 2100)

A Figura 24 apresenta a distribuicdo das vazdes simuladas por més para 0s
cenarios SSP2-4.5 e SSP5-8.5 no periodo de 2022 a 2100. Comparando-se 0s
cenarios, observa-se que ambos 0s cenarios exibem um padrédo sazonal semelhante,

com maiores vazdes concentradas entre os meses de janeiro e junho e menores
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vazdes entre julho e dezembro. No entanto, o0 SSP5-8.5 (Figura 24-b), que representa
um cenario de emissfes mais intensas, apresenta uma maior variabilidade nas
vaz0es, evidenciada pela maior dispersédo dos valores e presenca de mais outliers.
Esses resultados sugerem que mudancgas climéticas mais severas podem resultar em

eventos hidrologicos extremos mais frequentes e intensos.

4.4  ANALISE DE TENDENCIA NAS VAZOES SIMULADAS

A Figura 25 mostra a analise de tendéncia através do método MK, que foi
aplicado as vaz6es médias anuais observadas (2009 a 2021) e vazfes simuladas a
partir de 2022, sob os cenarios SSP2-4.5 e SSP5-8.5.
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Figura 25: Tendéncia das vaz6es médias anuais para 0s cenarios SSP2-4.5 (a) e
SSP5-8.5 (b)

A partir da Figura 25, obtém-se as tendéncias das vazdes médias, para o futuro,
nos cenarios climaticos SSP2-4.5 (médias emissdes) e SSP5-8.5(altas emissfes). No
cenario SSP2-4.5, néo foi identificada uma tendéncia significativa nas vazdes, apesar
de decrescente, conforme os resultados do teste MK (Z = -0,57; p-valor=0.569) e
estimador de Sen de -0,077 m3/s. Esses resultados indicam estabilidade no regime
hidrolégico. Outrossim, o coeficiente de variagcdo (CV) de 22,11% sugere uma
variabilidade moderada, mas sem mudangas relevantes ao longo do tempo. Em
contraste, no cenario SSP5-8.5, foi detectada uma tendéncia decrescente
significativa, com base nos resultados do teste MK (Z=-2,59; p-valor=0.00968) e
estimador de Sen de -0,271 m?/s, apontando para uma reducéo gradual nas vazodes.
O CV de 21,76% mostra uma variabilidade semelhante ao cenario de médias

emissdes, porém em um contexto de declinio na disponibilidade hidrica da sub-bacia
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hidrografica do rio Guama. Esses resultados destacam que, enquanto o cenario de
emissfes médias mantém a estabilidade das vazdes, o cenario de altas emissdes
pode levar a impactos hidrolégicos adversos, com reducao na disponibilidade de 4gua
na sub-bacia, reforcando a importancia de politicas de mitigacdo das mudancas

climaticas para preservar 0s recursos hidricos.
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5 CONCLUSAO

O presente estudo demonstrou 0 bom desempenho de um modelo hidrologico
via aprendizado de maquina com RNA, em particular a RNN-NARX, ao estimar vazao
em cenarios de mudancas climaticas, em uma bacia hidrografica da Amazénia. As
vaz0es simuladas apresentaram os padrdes sazonais dos dados observados, todavia
ocorre subestimacdo nas magnitudes dos eventos maximos, associado a
subestimacéo presente nas projecbes das precipitagdes, que sdo 0s vetores de
entrada do modelo. A subestimacgéo é resultante de vieses provenientes dos GCMs.
Esses vieses foram corrigidos através do método EQM, resultando em melhores
métricas de desempenho determinadas entre vazdes observadas e simuladas, tendo
como entradas as precipitacdes projetadas nos cenarios SSP2-4.5 e SSP5-8.5 para o
periodo de referéncia (2009-2021). Nesse caso o desempenho da modelagem foi
classificado como “confiavel”, “bom” e “excelente” com valores de FIT de ~0,9 e KGE
de 0,74-0,75 em ambos os cenarios (SSP2-4.5 e SSP5-8.5). A correcao de viés,
também, foi aplicada a simula¢édo das vazdes de longo prazo, i.e., de 2022 a 2100,
considerando os dois cendrios supramencionados, permitindo a analise de tendencia
das vazdes resultantes. Assim, no cenario SSP2-4.5 (emissdes médias), ndo foi
identificada uma tendéncia significativa nas vazfées, com um estimador de Sen de -
0,07704, os resultados do teste MK (Z =-0,57; p-valor=0.569), indicando estabilidade
no regime hidroloégico. O coeficiente de variacdo (CV) de 22,11% sugere uma
variabilidade moderada, mas sem mudangas relevantes ao longo do tempo. Em
contraste, no cenario SSP5-8.5 (emissdes altas), foi detectada uma tendéncia
decrescente significativa, com um estimador de Sen de -0,27110, os resultados do
teste MK (Z=-2,59; p-valor=0.00968), apontando para uma reducdo gradual nas
vazBes médias anuais. O CV de 21,76% mostra uma variabilidade semelhante ao
cenario SSP2-4.5, porém em um contexto de declinio na disponibilidade hidrica da
sub-bacia hidrografica do Rio Guama. A simulacdo e analise de vazdes futuras sob a
influéncia das mudancas climaticas devem ser popularizadas, visando fomentar

politicas publicas e estratégias de adaptacéo frente ao aquecimento global.
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